• Authors:
    • Gundersen, H.
    • Nielsen, H. H.
    • Rasmussen, J.
  • Source: WEED SCIENCE
  • Volume: 57
  • Issue: 3
  • Year: 2009
  • Summary: POST weed harrowing and other cultivation methods to control weeds in early crop growth stages may result in crop damage due to low selectivity between crop and weeds. Crop tolerance to cultivation plays an important role but it has not been clearly defined and analyzed. We introduce a procedure for analyzing crop tolerance on the basis of digital image analysis. Crop tolerance is defined as the ability of the crop to avoid yield loss from cultivation in the absence of weeds, and it has two components: resistance and recovery. Resistance is the ability of the crop to resist soil covering and recovery is the ability to recover from it. Soil covering is the percentage of the crop that has been buried because of cultivation. We analyzed data from six field experiments, four experiments with species of small grains, barley, oat, wheat, and triticale, and two experiments with barley cultivars with different abilities to suppress weeds. The order of species' tolerance to weed harrowing was triticale > wheat > barley > oat and the differences were mainly caused by different abilities to recover from soil covering. At 25% soil covering, grain yield loss in triticale was 0.5%, in wheat 2.5%, in barley 3.7%, and in oat 6.5%. Tolerance, resistance, and recovery, however, were influenced by year, especially for oat and barley. There was no evidence of differences between barley cultivars in terms of tolerance indicating that differences among species are more important than differences among cultivars. Selectivity analysis made it possible to calculate the crop yield loss due to crop damage associated with a certain percentage of weed control. In triticale, 80% weed control was associated with 22% crop soil cover on average, which reduced grain yield 0.4% on average in the absence of weeds. Corresponding values for wheat, barley, and oat were 23, 21, and 20% crop soil cover and 2.3, 3.6, and 5.1% grain yield loss.
  • Authors:
    • Kindred, D. R.
    • Wiltshire, J. J. J.
    • Sylvester-Bradley, R.
    • Hatley, D. L. J.
    • Clarke, S.
  • Source: HGCA Project Report
  • Volume: i + 47 pp.
  • Issue: 460
  • Year: 2009
  • Summary: This report describes a second year of research that tested whether soil nitrogen supplies to cereal crops can be detected using canopy sensors; the first season was reported in HGCA Project Report No. 427. Nitrogen fertiliser experiments on cereals were established at four sites in 2006-7. In the following year, commercial cereal crops (wheat, oats or barley) were grown and, at each site, plot positions as used in the previous year were marked out for testing with a reflectance sensor. Reflectance was measured four times during tillering, between December and May (dependant on site), using a Crop Circle instrument (provided by Soilessentials Ltd) which measured reflectance at 880 nm (near-infrared, NIR) and 590 nm (orange). A Normalised Difference Vegetation Index (NDVI) was calculated to give a measure of vegetation cover. Soil mineral N (SMN) data were obtained for the sites. No fertiliser N was applied in 2008 and total N uptake at harvest was taken to represent the 'soil N supply' (SNS). Data were interpreted for relationships between canopy reflectance and soil N. The best level of tillering and ground cover was achieved at High Mowthorpe, which was sown early. Boxworth and Terrington crops were smaller, and the crop at Rosemaund was very small. High levels of N applied in 2007 had large effects on SMN at Boxworth and Terrington, but maximum amounts were smaller at High Mowthorpe or Rosemaund and maximum SMN and SNS levels were small. Use of the sensor successfully detected the differences in SMN residues at Boxworth and Terrington, especially below 120-140 kg/ha, as was found in the previous year's experiments. The relationships improved with later assessment of NDVI. Change in NDVI between assessment dates showed that canopies always grew during the 2007/08 winter but change in NDVI was less useful for predicting SNS than absolute values of NDVI. Merged data from both seasons of the study showed that NDVI signals overwinter could be interpreted according to their differences from the theoretical NDVI of an unlimited crop. It was concluded that young canopies can signal soil N status where SMN is less than 120-140 kg/ha. Effects were more certain as crops grew, so canopy sensing for soil N supplies should prove more useful as the season progresses.
  • Authors:
    • Tobiasz-Salach, R.
    • Bobrecka-Jamro, D.
    • Szpunar-Krok, E.
  • Source: Fragmenta Agronomica
  • Volume: 26
  • Issue: 2
  • Year: 2009
  • Summary: The field experiments was carried out on good wheat soil complex during 2003-2005 in Podkarpacie region (5003′ N, 2206′ E). The 2-species mixtures of naked oats Polar with cultivars of faba bean Akord - its growth pattern undefined, Albus - with low tanine content and self-completing, Titus - self-completing were not distinguishable as regards grain yield as they in most cases gave yields higher than faba bean in pure sowing and even in years with highest rainfall, it gave higher yields than oats in pure sowing. While crude protein yields of mixtures were higher than oats in pure sowing but lower than faba bean, the energy value of yields were however higher in comparison with sole-species cultivations. The content of faba bean grains damaged by Bruchus rufimanus Boh. in mixtures with naked oats did not differ significantly from those in pure sowing. The traditional Akord cultivar was characterized with less stability of yields during the period covered but its grains were infected by Bruchus rufimanus Boh. than self-completing cultivars. Having in mind prevailing conditions of Podkarpacie, it is recommended that Albus cultivar be added to mixtures with naked oats, Polar variety due to very high grain and protein yields as well as energy value of yields.
  • Authors:
    • Baldock, J.
    • Unkovich, M.
    • Marvanek, S.
  • Source: Crop & Pasture Science
  • Volume: 60
  • Issue: 7
  • Year: 2009
  • Summary: Dryland agriculture is both a potential source and potential sink for CO 2 and other greenhouse gases. Many carbon accounting systems apply simple emissions factors to production units to estimate greenhouse gas (GHG) fluxes. However, in Australia, substantial variation in climate, soils, and management across >20 Mha of field crop sowings and >30 Mha of sown pastures in the intensive land use zone, provides substantial challenges for a national carbon accounting system, and simple emission factors are unlikely to apply across the region. In Australia a model framework has been developed that requires estimates of crop dry matter production and harvested yield as the first step to obtain carbon (residue) inputs. We use Australian Bureau of Statistics data to identify which crops would need to be included in such a carbon accounting system. Wheat, barley, lupin, and canola accounted for >80% of field crop sowings in Australia in 2006, and a total of 22 crops account for >99% of the sowing area in all States. In some States, only four or six crops can account for 99% of the cropping area. We provide a ranking of these crops for Australia and for each Australian State as a focus for the establishment of a comprehensive carbon accounting framework. Horticultural crops, although diverse, are less important in terms of total area and thus C balances for generic viticulture, vegetables, and orchard fruit crops should suffice. The dataset of crop areas presented here is the most comprehensive account of crop sowings presented in the literature and provides a useful resource for those interested in Australian agriculture. The field crop rankings presented represent only the area of crop sowings and should not be taken as rankings of importance in terms of the magnitude of all GHG fluxes. This awaits a more detailed analysis of climate, soils, and management practices across each of the regions where the crops are grown and their relationships to CO 2, nitrous oxide and methane fluxes. For pastures, there is a need for more detailed, up to date, spatially explicit information on the predominant sown pasture types across the Australian cropping belt before C balances for these can be more reliably modelled at the desired spatial scale.
  • Authors:
    • Bernardi, A.
    • Harden, S.
    • Wilson, B.
    • Young, R.
  • Source: Australian Journal of Soil Research
  • Volume: 47
  • Issue: 3
  • Year: 2009
  • Summary: Australian agriculture contributes an estimated 16% of all national greenhouse gas emissions, and considerable attention is now focused on management approaches that reduce net emissions. One area of potential is the modification of cropping practices to increase soil carbon storage. This paper report short-medium term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers' paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment. Soil organic carbon stocks (C S ) remained unchanged under both zero tillage long fallow wheat ( Triticum aestivum)-sorghum ( Sorghum) rotations and zero tillage continuous winter cereal in a replicated field experiment from 1994 to 2000. There was some evidence of accumulation of C S under intensive (>1 crop/year) zero tillage response cropping. There was significant accumulation of C S (~0.35 tonnes/ha/year) under 3 types of perennial pasture, despite removal of aerial biomass with each harvest. Significant accumulation was detected in the 0-0.1, 0.1-0.2, and 0.2-0.4 m depth increments under lucerne and the top 2 increments under mixed pastures of lucerne and phalaris and of C3 and C4 perennial grasses. Average annual rainfall for the period of observations was 772 mm, greater than the 40-year average of 680 mm. A comparison of major attributes of cropping systems and perennial pastures showed no association between aerial biomass production and accumulation rates of C S but a positive correlation between the residence times of established plants and accumulation rates of C S . C S also remained unchanged (1998/2000-07) under zero tillage cropping on nearby farms, irrespective of paddock history before 1998/2000 (zero tillage cropping, traditional cropping, or ~10 years of sown perennial pasture). These results are consistent with previous work in Queensland and central western New South Wales suggesting that the climate (warm, semi-arid temperate, semi-arid subtropical) of much of the inland cropping country in eastern Australia is not conducive to accumulation of soil carbon under continuous cropping, although they do suggest that C S may accumulate under several years of healthy perennial pastures in rotation with zero tillage cropping.
  • Authors:
    • Zhu, C.
    • He, K.
    • Pan, M.
    • Mao, G.
    • Pan, G.
    • Zheng, Y.
  • Source: Guizhou Agricultural Sciences
  • Issue: 1
  • Year: 2009
  • Summary: This study investigated the effects of different intercropping and interplanting patterns of green manure on soil fertility in Guizhou, China. The results showed that maize yield in improved soil fertility areas under 1:1 application ratio between organic and inorganic fertilizer averagely increased by 23.05% (102.5 kg/667m 2) compared with the conventional application pattern. The yields of the potato-green manure-maize pattern, rape-green manure-maize pattern and wheat-green manure-maize pattern increased by 51.2-66.0 kg/667m 2, 146.1 kg/667 m 2 and 146.7 kg/667 m 2, respectively compared with the conventional application pattern. The soil organic matter, total nitrogen, alkaline hydrolysis nitrogen, active P and active K content in improved soil fertility areas averagely increased by 0.23%, 0.033%, 23.23 mg/kg, 1.5 mg/kg and 17.75 mg/kg respectively and the soil fertility was increased to varying degrees. The high maize yield depends on its strong and high plants and better economic characters.
  • Authors:
    • Smith, M.
    • Barnard, A.
  • Source: Field Crops Research
  • Volume: 112
  • Issue: 2/3
  • Year: 2009
  • Summary: Preharvest sprouting (PHS) is a risk factor in winter cereal farming in certain environments as even mild sprouting affects the suitability of wheat for end-use products. This is because even mild sprouting affects the suitability of wheat for end-use products. The extent of PHS is hard to predict. To establish a quantitative relationship between PHS and different climatic characteristics, eighteen winter wheat cultivars were planted in three regions representative of the wheat growing conditions of the Free State Province of South Africa over four years. Climatic characteristics during six environmental periods were investigated, namely planting to harvest (PH), anthesis to harvest (AH), grain filling (GF), 14 days prior to physiological maturity (14M) and 10 and 20 days prior to harvest (10H and 20H) respectively. These data sets were correlated with PHS resistance determined in a rain simulator to determine if climate during various stages of grain development had an effect on the expression of dormancy and subsequent PHS. Principal component analysis (PCA) on mean PHS values identified three distinct groupings of cultivars, ranging from PHS susceptible to PHS resistant. A fairly strong positive correlation ( r=0.715, P=0.008) was found between PHS and minimum temperature during grain filling. Large variations in PHS values were also observed between the various cultivars, indicating that certain cultivars, such as Caledon, Gariep, Limpopo, Matlabas, PAN 3118, PAN 3120, PAN 3377 and SST 334, are more sensitive to environmental effects than others and that the variation in cultivar PHS is not consistent across sites and years.
  • Authors:
    • Kovacs, I.
    • Lantos, C.
    • Pauk, J.
    • Cseuz, L.
  • Source: Cereal Research Communications
  • Volume: 37
  • Issue: Suppl. 1
  • Year: 2009
  • Summary: Drought tolerance of wheat was tested by a mobile automatic rain shelter (MARS) in a conventional pedigree breeding program of Cereal Research Non-Profit Ltd. Co. (CRC) in Szeged. The MARS, parallel with ideal water supply gives a good chance for field testing of relatively high number of genotypes for drought tolerance. Using the automatic rain shelter which was installed in 2006, advanced lines of winter wheat could be tested for tolerance to water shortages under irrigated (control treatment) and under dry conditions. Withdrawal of water caused significant effects on yield and yield components and raised the canopy temperature of the genotypes tested. We have developed a novel breeding system by which we can routinely select for drought resistance. The methods applied can easily be incorporated into our working pedigree breeding system.
  • Authors:
    • Basnyat, P.
    • Liu, P.
    • Lemke, R.
    • Janzen, H.
    • Campbell, A.
    • Gan, T.
    • McDonald, C. L.
  • Source: Canadian Journal of Plant Science
  • Volume: 89
  • Issue: 5
  • Year: 2009
  • Summary: Crop roots transport water and nutrients to the plants, produce nutrients when they decompose in soil, and provide organic C to facilitate the process of C sequestration in the soil. Many studies on these subjects have been published for cereal crops, but little is known for oilseed and pulse crops. This study was conducted at Swift Current, Saskatchewan, in 2006 and 2007 to characterize the root growth and distribution profile in soil for selected oilseed and pulse crops. Three oilseed [canola ( Brassica napus L.), mustard ( Brassica juncea L.), flax ( Linum usitatissimum L.)], three pulse crops [chickpea ( Cicer arietinum L), dry pea ( Pisum sativum L.) lentil ( Lens culinaris Medik.)], and spring wheat ( Triticum aestivum L.) were grown in 100 cm deep * 15 cm diameter lysimeters pushed into a silt loam soil. Crops were studied under rainfed and irrigated conditions. Lysimeters were removed from the field and sampled for above-ground (AG) and root mass at different depths at five growth stages. Root mass was highest for canola (1470 kg ha -1) and wheat (1311 kg ha -1), followed by mustard (893 kg ha -1) and chickpea (848 kg ha -1), and was lowest for dry pea (524 kg ha -1) and flax (440 kg ha -1). The root mass of oilseeds and pulses reached a maximum between late-flowering and late-pod stages and then decreased to maturity, while wheat root mass decreased to maturity after reaching a maximum at boot stage. On average, about 77 to 85% of the root mass was located in the 0-40 cm depth. Canola, mustard, and wheat rooted to 100 cm, while the pulses and flax had only 4 to 7% of the root mass beyond the 60 cm depth. Irrigation only increased root mass in the 0-20 cm depth. Roots developed more rapidly than AG biomass initially, but the ratio of root biomass to AG biomass decreased with plant maturity. At maturity, the ratio of root biomass to AG biomass was 0.11 for dry pea, and between 0.20 and 0.22 for the other crops tested. Our findings on rooting depths and root mass distribution in the soil profile should be useful for modelling water and nutrient uptake by crops, estimating C inputs into soil from roots, and developing diverse cropping systems with cereals, oilseeds and pulses for semiarid environments.
  • Authors:
    • Hill, J.
    • Jacobs, J. L.
    • Jenkin, T.
  • Source: Animal Production Science
  • Volume: 49
  • Issue: 7
  • Year: 2009
  • Summary: The efficient production and subsequent utilisation of home-grown forage is seen as the cornerstone of profitability of the dairy industry as it leads to lower unit costs of milk production compared with purchased forage or grain supplements. Cereals such as wheat ( Triticum aestivum L.), oats ( Avena sativa L.) and triticale ( Triticum * Triticosecale) all have the potential to produce high forage dry matter (DM) yields. These forages are not widely grown within dryland Australian dairy systems and there is a paucity of information on both the agronomic requirements and subsequent ensiling and feed-out management under these conditions. The experiment reported in this paper examines the DM yield, nutritive and ensiling characteristics of three small-grain cereals (triticale, wheat and oats) cut at various stages of development and ensiled with or without silage additives. We hypothesised that: (1) delaying harvesting until later stages of growth would result in higher DM yields, but negatively impact on both nutritive and fermentation characteristics of subsequent silages; (2) ensiling wilted material at earlier harvests would improve fermentation characteristics compared with direct ensiled material; and (3) the use of silage additives at all harvests would improve fermentation characteristics of resultant silages compared with untreated silages. Apart from winter oats, the estimated metabolisable energy of forages was highest at the boot stage of growth, declined during anthesis and then rose again during milk and soft-dough stage of growth. The crude protein content of forages declined with maturity, with final values at soft dough below 90 g/kg DM. Neutral detergent fibre content was highest at anthesis and then declined, with lowest values observed at soft dough (497-555 g/kg DM). In the majority of cases silages were well preserved, with direct ensiled material having pH values generally below 4.5 and wilted material below 5.0, with limited proteolysis as assessed by ammonia-N contents in the range of 5-15% of total-N. The production of volatile fatty acids and lactic acid was influenced by wilting and the use of additives. Generally, wilted silages fermented less than the corresponding direct ensiled forages, whereas the use of Sil-All 4*4 additive resulted in a lactic acid-dominant fermentation compared with LaSil additive, which resulted in a greater proportion of acetic acid as an end product of fermentation. The findings of the present study highlight the potential of forage cereals to produce high DM yields for whole crop cereal silage. The timing of harvest directly influences nutritive characteristics of forages for ensiling. The use of silage additives can assist in controlling fermentation pathways during ensilage, ensuring the production of silages with fermentation attributes more likely to lead to higher intakes when fed to animals.