- Authors:
- Source: Plant Physiology
- Volume: 149
- Issue: 1
- Year: 2009
- Authors:
- Wyse, D. L.
- Buckley, D. H.
- DeHaan, L. R.
- Crews, T. E.
- Mai, J. G.
- Mangan, M. E.
- Young, L.
- Broussard, W.
- DuPont, S. T.
- Culman, S. W.
- Glover, J. D.
- Reynolds, H. L.
- Turner, R. E.
- Ferris, H.
- Source: Agriculture, Ecosystems & Environment
- Volume: 137
- Issue: 1-2
- Year: 2009
- Summary: Perennial vegetation can provide multiple ecosystem services essential for sustainable production more effectively than production systems based on annual crops. However, the ability of annually harvested, unfertilized perennial systems to sustain long-term yields while also maintaining ecosystem services has not been widely studied. Here we compare the impacts of harvested perennial grass and annual crop fields on ecosystem functioning in KS, USA. Despite the lack of mineral fertilizer applications, the aboveground harvests of perennial fields yielded similar levels of N compared to those of conventional high-input wheat (Triticum aestivum) fields and at only 8% of the in-field energy costs. Their 75-yr cumulative N yield per ha was approximately 23% greater than that from the region's wheat fields. In terms of aboveground food webs, perennial fields harboured greater numbers and/or diversity of insect pollinators, herbivores and detritivores. Belowground, perennial grass fields maintained 43 Mg ha-1 more soil carbon and 4 Mg ha-1 more soil nitrogen than annual crop fields in the surface 1 m. Soil food webs in perennial fields, as indicated by nematode communities, exhibited greater food web complexity and stability than did those in annual crop fields. In surrounding watersheds, increased annual cropland was correlated with higher riverine nitrate-nitrogen levels. Given their benefits, harvested perennial grasslands provide valuable ecological benchmarks for agricultural sustainability.
- Authors:
- Reider, C.
- Seidel, R.
- Ulsh, C. Z.
- Lotter, D.
- Hepperly, P.
- Source: Compost Science & Utilization
- Volume: 17
- Issue: 2
- Year: 2009
- Authors:
- Horwath, W.
- Kallenbach, C.
- Assa, J.
- Burger, M.
- Year: 2009
- Authors:
- Lu, Y.
- Conklin, A. E.
- Teasdale, J. R.
- Hanson, J. C.
- Hima, B. L.
- Cavigelli, M. A.
- Source: Renewable Agriculture and Food Systems
- Volume: 24
- Issue: 2
- Year: 2009
- Summary: Interest in organic grain production is increasing in the United States but there is limited information regarding the economic performance of organic grain and forage production in the mid-Atlantic region. We present the results from enterprise budget analyses for individual crops and for complete rotations with and without organic price premiums for five cropping systems at the US Department of A(Agriculture-Agricultural Research Service (USDA-ARS) Beltsville Farming Systems Project (FSP) from 2000 to 2005. The FSP is a long-term cropping systems trial established in 1996 to evaluate the sustainability of organic and conventional grain crop production. The five FSP cropping systems include a conventional. three-year no-till corn (Zea mays L.)-rye (Secale cereale L.) cover crop/soybean (Glycine max (L.) Merr)-wheat (Triticum aestivum L.)/soybean rotation (no-till (NT)), a conventional, three-year chisel-till corn-rye/soybean-wheat/soybean rotation (chisel tillage (CT)), a two-year organic hairy vetch (Vicia villosa Roth)/corn-rye/soybean rotation (Org2), a three-year organic vetch/corn-rye/soybean-wheat rotation (Org3) and a four- to six-year organic corn-rye/soybean-wheat-red clover (Trifolium pratense L.)/orchard grass (Dactylis glomerata L.) or alfalfa (Medicago sativa L.) rotation (Org4+). Economic returns were calculated for rotations present from 2000 to 2005, which included some slight changes in crop rotation sequences due to weather conditions and management changes additional analyses were conducted for 2000 to 2002 when all crops described above were present in all organic rotations. Production costs were, in general, greatest for CT, while those for the organic systems were lower than or similar to those for NT for all crops. Present value of net returns for individual crops and for full rotations were greater and risks were lower for NT than for CT. When price premiums for organic crops were included in the analysis, cumulative present value of net returns for organic systems (US$3933 to 5446 ha(-1), 2000 to 2005. US$2653 to 2869 ha(-1), 2000 to 2002) were always Substantially greater than for the conventional systems (US$1309 to 1909 ha(-1),2000 to 2005; US$634 to 869 ha(-1), 2000 to 2002). With price premiums, Org2 had greater net returns but also greater variability of returns and economic risk across all years than all other systems, primarily because economic Success of this short rotation was highly dependent on the success of soybean, the crop with the highest returns. Soybean yield variability was high due to the impact of weather on the success of weed control in the organic systems. The longer, more diverse Org4+ rotation had the lowest variability of returns among organic systems and lower economic risk than Org2. With no organic price premiums, economic returns for corn and soybean in the organic systems were generally lower than those for the conventional systems due to lower grain yields in the organic systems. An exception to this pattern is that returns for corn in Org4+ were equal to or greater than those in NT in four of six years due to both lower production costs and greater revenue than for Org2 and Org3. With no organic premiums, present value of net returns for the full rotations was greatest for NT in 4 of 6 years and greatest for Org4+ the other 2 years, when returns for hay crops were high. Returns for individual crops and for full rotations were, in general, among the lowest and economic risk was, in general, among the highest for Org2 and Org3. Results indicte that Org4+, the longest and most diverse rotation, had the most stable economic returns among organic systems but that short-term returns could be greatest with Org2. This result likely explains, at least in part, why some organic farmers in the mid-Atlantic region, especially those recently converting to organic methods, have adopted this relatively short rotation. The greater stability of the longer rotation, by contrast, may explain why farmers who have used organic methods for longer periods of time tend to favor rotations that include perennial forages.
- Authors:
- Mishra, U.
- Lal, R.
- Christopher, S. F.
- Source: Soil Science Society of America Journal
- Volume: 73
- Issue: 1
- Year: 2009
- Summary: No-till (NT) agriculture has been promoted as one of the optimal management practices that preserves soil and water, and increases soil organic C (SOC) compared with conventional tillage (CT) practices. Information on SOC sequestration in NT systems, however, has been based on measurements from the surface soil (<30 cm) and little is known about the extent of SOC sequestration in NT across the entire 0- to 60-cm soil profile. We conducted a regional study of NT farming to assess the extent of SOC sequestration in the whole soil profile across 12 contrasting but representative soils in the Midwestern United States, each within a Major Land Resource Area (MLRA: 98, 111C, 114B, 122 in Indiana; 111A, 111B, 111D, 124, and 126 in Ohio; and 127 and 147 in Pennsylvania). Soils on gentle terrain were sampled in paired NT and CT fields as well as in an adjacent woodlot in each MLRA. The SOC and N concentrations were greater in the surface 0- to 5-cm soil in NT than CT in MLRA 124. The SOC concentration in CT soil was greater than in NT soil at 10 to 30 cm in MLRAs 98 and 126. The total SOC pool for the whole soil profile did not differ between NT and CT in eight of the 12 MLRAs and the total profile SOC was actually greater under CT in MLRAs 98, 127, and 126, resulting in negative C sequestration rates on conversion from CT to NT in these three MLRAs. This regional study suggests that the entire soil profile must be examined and ecosystem C budget assessed when elucidating SOC sequestration in NT vs. CT fields.
- Authors:
- Raun, W. R.
- Solie, J. B.
- Epplin, F. M.
- Brorsen, B. W.
- Biermacher, J. T.
- Source: Agricultural Economics
- Volume: 40
- Issue: 4
- Year: 2009
- Summary: Plant-based precision nitrogen fertilizer application technologies have been developed as a way to predict and precisely meet nitrogen needs. Equipment necessary for precision application of nitrogen, based on sensing of growing wheat plants in late winter, is available commercially, but adoption has been slow. This article determines the expected proï¬t from using a plant-sensing system to determine winter wheat nitrogen requirements. We ï¬nd that plant-sensing systems have the potential to be more proï¬table than traditional nonprecise systems, but the existing system simulated was roughly breakeven with a traditional system.
- Authors:
- Source: Soil Science Society of America Journal
- Volume: 73
- Issue: 2
- Year: 2009
- Summary: Franzluebbers (2009) is right about the need for a more intensive soil sampling, "repeated sampling with time,"and "stratified sampling" as well as for the use of multiple fields and collection of larger number of pseudoreplicates to overcome the high field variability in soil organic carbon (SOC) pools within each Major Land Resource Area (MLRA). The selected fields were representative of each MLRA in terms of soil type, slope, and management, but it is correct that a single soil would not capture all the variability in soil and management for the whole MLRA. This study was not intended to relate the data from the single soil to the whole MLRA but rather to emphasize the differences in SOC sequestration rates among the three management systems within each soil.
- Authors:
- Source: Cereal Research Communications
- Volume: 37
- Issue: Suppl. 1
- Year: 2009
- Summary: The effects of different water supply cropyears (2007 year=dry, with water stress; 2008 year=optimum water supply) on the yields and agronomic traits of wheat in different crop models (crop rotation, fertilization, irrigation) were studied. In non-irrigated treatment the maximum yields of winter wheat were 5590 kg ha -1 in biculture (maize-wheat) and 7279 kg ha -1 in triculture (peas-wheat-maize) in 2007 year characterized by water-deficit stress. In 2008 (optimum rain amount and distribution) the maximum yields were 7065 kg ha -1 (biculture) and 8112 kg ha -1 (triculture) in non irrigated conditions. In water-deficit stress cropyear (2007 year) the yield-surpluses of wheat were 2245 kg ha -1 (biculture) and 1213 kg ha -1 (triculture), respectively. The nutrient utilization of wheat was modified by abiotic (water) and biotic (leaf- and stem-diseases) stress. The fertilization surpluses of wheat were 2853-3698 kg ha -1 (non-irrigated) and 3164-5505 kg ha -1 (irrigated) in a dry cropyear (2007) and 884-4050 kg ha -1 (non-irrigated) and 524-3990 kg ha -1 (irrigated) in an optimum cropyear (2008). The optimum fertilizer doses varied N 150-200+PK in biculture and N 50-150+PK in triculture depending on cropyear and irrigation. The abiotic stress (water deficit) influenced the agronomic traits (diseases, lodging) of winter wheat. The optimalization of agrotechnical elements provides 7,8-8,5 t ha -1 yields in dry cropyear and 7,1-8,1 t ha -1 yields of wheat in good cropyear, respectively.
- Authors:
- Source: Analele UniversitaÌţii din Oradea, Fascicula: Protecţia Mediului
- Volume: 14
- Year: 2009
- Summary: In non-irrigated treatment the maximum yields of winter wheat were 5590 kg ha -1 in biculture (maize-wheat) and 7279 kg ha -1 in triculture (peas-wheat-maize) in 2007 year characterized by water-deficit stress. In 2008 (optimum rain amount and distribution) the maximum yields were 7065 kg ha -1 (biculture) and 8112 kg ha -1 (triculture) in non irrigated conditions. The fertilization surpluses of wheat were 2853-3698 kg ha -1 (non-irrigated) and 3164-5505 kg ha -1 (irrigated) in a dry cropyear (2007) and 884-4050 kg ha -1 (non-irrigated) and 524-3990 kg ha -1 (irrigated) in an optimum cropyear (2008). The optimum fertilizer doses varied N 150-200+PK in biculture and N 50-150+PK in triculture depending on cropyear and irrigation. The optimalization of agrotechnical elements provides 7,8-8,5 t ha -1 yields in dry cropyear and 7,1-8,1 t ha -1 yields of wheat in good cropyear, respectively. Our scientific results proved that in water stress cropyear (2007) the maximum yields of maize were 4316 kg ha -1 (monoculture), 7706 kg ha -1 (biculture), 7998 kg ha -1 (triculture) in non irrigated circumstances and 8586 kg ha -1, 10 970 kg ha -1, 10 679 kg ha -1 in irrigated treatment, respectively. In dry cropyear (2007) the yield-surpluses of irrigation were 4270 kg ha -1 (mono), 3264 kg ha -1 (bi), 2681 kg ha -1 (tri), respectively. In optimum water supply cropyear (2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha -1 (bi), 13 987-14 180 kg ha -1 (tri) so there was no crop-rotation effect. We obtained 8,6-11,0 t ha -1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha -1 in optimum cropyear on chernozem soil with using appropriate agrotechnical elements.