- Authors:
- Rosculete, E.
- Gheorghe, D.
- Matei, G.
- Imbrea, F.
- Cojocaru, I.
- Source: Research Journal of Agricultural Science
- Volume: 41
- Issue: 1
- Year: 2009
- Summary: Field studies were conducted in Romania, from 2006 to 2008, to determine the effect of rotations and fertilizer applications on the yield and quality of maize in irrigated sandy soils. The treatments comprised 3 years rotation (wheat, maize and soyabeans), 4 years rotation (wheat, lucerne, maize and soyabeans), wheat monoculture, maize monoculture, 2 years rotation (maize and wheat), 5 years rotation (wheat, lucerne, potato, maize and wheat), 3 years rotation (wheat, maize and groundnut), 6 years rotation (maize, groundnuts, wheat, sunflower, potato and wheat) and 4 years rotation (bean, wheat, maize and wheat) and fertilizer applications, i.e. 160 kg N and 80 kg P/ha, 80 kg N and 80 kg P/ha and control. Results showed that maize gave good seed yields, which varied between 4.5 q/ha on unfertilized variant and 38.5 q/ha in the 6 years rotation on 160 kg N and 80 kg P/ha. The most valuable rotations for maize were beans, soyabean, groundnuts or lucerne. Applying fertilizers in monoculture resulted only in small increases in production. The best variant with fertilizers was the 80 kg N and 80 kg P/ha, which increased the yields of all rotations used compared to the control. On all the rotations studied, the nitrogen fertilizer application improved the N content of maize seeds and directly increased the protein content, while other macro- and microelements in maize seeds registered small fluctuations, some of which were considered as constant no matter what kind of rotation was used.
- Authors:
- Source: Agrometeorologia dos cultivos: o fator meteorológico na produção agrÃcola
- Year: 2009
- Summary: This book brings together a broad base of information on 32 major Brazilian agricultural crops and their relations with climate. The focus of the book is not on the methodologies and applications of agrometeorology per se, but rather restricts its focus to crops and traits that determine yield as a function of the environment. The crops included are rice, castor oil, sunflowers, pineapples, soyabeans, triticale, maize, potatoes, barley, peanuts, oats, onions, canola, wheat, cotton, beans, sugarcane, Pinus, black wattle ( Acacia mearnsii), tropical and temperate grapes, coconuts, citrus, bananas, sisal, cocoa, coffee, apples, Jatropha, Eucalyptus and the fodder plants Cynodon, Brachiaria and Panicum. The contents of the book are divided into three main parts, I. Introduction, II. Temporary crops and III. Permanent crops, with each chapter within parts II and III dedicated to a particular crop, and covering: (1) the main features of farming and phenology; (2) agrometeorological productivity constraints - water availability, temperature, solar radiation, photoperiod and wind; and (3) adverse events - hail and rainstorms, droughts and dry spells, winds and gales, frost, and too much rain and over-prolonged drought. The book was organized by the National Institute of Meteorology and had the collaboration of 105 researchers from 37 Brazilian institutions (federal and state), research centres, institutes and universities.
- Authors:
- Haller, W. T.
- Mudge, C. R.
- Source: Weed Technology
- Volume: 23
- Issue: 1
- Year: 2009
- Summary: The effects of flumioxazin in irrigation water were evaluated on four row crop species (corn, cotton, soybean, and wheat) and three ornamental species (begonia, impatiens, and snapdragon). Plants were overhead irrigated one time with flumioxazin at concentrations of 0, 10, 25, 50, 100, 200, 400, 800, 1,600, and 3,200 g ai/L in water equivalent to 1.27 cm. Ornamental plant tolerances on the basis of a 10% reduction in dry weight (effective concentration 10 [EC 10]) were as follows: impatiens (40)
- Authors:
- Jauhiainen, L.
- Peltonen-Sainio, P.
- Hakala, K.
- Source: Agricultural and Food Science
- Volume: 18
- Issue: 3-4
- Year: 2009
- Summary: As the northern hemisphere will experience the greatest increases in temperature and indications of climatic change are already visible in the north (in the 2000s average temperatures exceeded the long-term mean), we sought to establish if there are already signs of increased variability in yield and quality of the major field crops grown under the northernmost European growing conditions: spring and winter cereals (barley Hordeum vulgare L., oat Avena saliva L., wheat Triticum aestivum L., rye Secale cereale L.), spring rapeseed (turnip rape Brassica rapa L., oilseed rape B. napus L.), pea (Piston sativum L.) and potato (Solanum tuberosum L.). We used long-term yield datasets of FAO for Finland (1960s to date) and MTT Agrifood Research Finland (MTT) Official Variety Trial datasets on yield and quality of major field crops in Finland since the 1970s. Yield variability was exceptionally high in the 1980s and 1990s, but previously and subsequently national yields were clearly more stable. No progressive increase in yield variability was recorded. No marked and systematic changes in variability of quality traits were recorded, except for rapeseed, which exhibited reduced variability in seed chlorophyll content. This may at least partly attribute to the differences in intensity of input use and thereby responsiveness of the crops before and after 1980 and 1990 decades. We also noted that in the 2000s average temperatures were higher than in earlier decades and this was the case for all months of the growing season except June, which represents, however, the most critical phase for yield determination in most of the field crops in Finland. Also in the 2000s precipitation increased in the first three months of the growing season and thereafter decreased, but without signs of significantly increased numbers of heavy showers (extreme rain events). Hence, in general constant, increased average temperatures during the growing seasons of the 2000s were identified, but with reduced yield variability, which was partly attributable to the diminished use of inputs, especially fertilisers.
- Authors:
- Deen, W.
- Earl, H.
- Queen, A.
- Source: Agronomy Journal
- Volume: 101
- Issue: 6
- Year: 2009
- Summary: Red clover (Trifolium pratense L.) use as an underseeded cover crop in winter cereals has declined due to inability of growers to consistently establish uniform stands. The objective of this study was to assess the effect of light and soil moisture competition on underseeded red clover establishment and end of season dry matter production. Field trials were conducted at multiple locations in 2005 and 2006 in Ontario, Canada. Wheat (Triticum aestivum L.) N rate (67 and 135 kg N ha(-1)) and row thinning treatments (19-cm rows, every third 19-cm row removed at the 4-5 leaf stage) were used to alter light penetration and soil moisture competition. The high N rate and row thinning treatments consistently reduced light penetration, beginning as early as wheat stem elongation initiation, but had no effect on soil gravimetric moisture content. Soil moisture was primarily affected by location and year. Red clover dry weight in 2005, a relatively dry year, ranged from 688 to 1184 kg ha(-1), and in 2006, a relatively wet year, ranged from 2336 to 2805 kg ha(-1). Average final red clover stand count was 23 plants m(-2) in 2005 and 55 plants m(-2) in 2006. In 2005, plant mortality occurred before wheat anthesis. In both years, and at most locations, red clover final dry weight was positively correlated with light penetration, again beginning as early as initiation of wheat stem elongation. Final red clover dry weight in both years and red clover stand count in 2005 were correlated with soil gravimetric water content during wheat anthesis, but this was primarily due to location and year effects. Although both light penetration through the wheat canopy and soil moisture influence biomass production of underseeded red Clover, soil moisture has the greater influence and is altered very little by wheat management.
- Authors:
- Jadon, C.
- Meena, D. S.
- Kumar, R.
- Source: Haryana Journal of Agronomy
ALSO
THE JOURNAL OF RURAL AND AGRICULURAL RESEARCH, pp. 17-18, June, 2010
- Volume: 25
- Issue: 1/2
- Year: 2009
- Summary: The field experiment was undertaken during 2004-05 to 2007-08 on ARS, Kota to evaluate the performance of soybean-wheat, soybean-chickpea, soybean-coriander and soybean-onion cropping sequences in heavy textured, non-calcareous soils. The results revealed that soybean-onion sequence was more productive and remunerative compared to other sequences in irrigated areas of humid southeastern plain of Rajasthan.
- Authors:
- Prakash, V.
- Pandey, S. C.
- Kundu, S.
- Bhattacharyya, R.
- Srivastva, A. K.
- Gupta, H. S.
- Source: Soil Research
- Volume: 47
- Issue: 6
- Year: 2009
- Summary: We analysed results of a long-term experiments, initiated in 1973 on a sandy loam soil under rainfed condition and in 1995-96 on a silty clay loam soil under irrigated condition, to determine the influence of using different combinations of mineral fertiliser (NPK) and fertiliser+farmyard manure (FYM) at 10 Mg/ha on soil organic carbon (SOC) content and its changes in the 0-0.45 m soil depth. Fertilisation always caused a net gain in SOC stock. Such gain was positively proportional to the amount of C incorporated into the soils. Concentration of SOC in the 0-0.45 m depth increased by 44% in NPK+FYM treated plots compared with NPK (44.4 Mg C/ha) after 32 years under rainfed condition and by 14% in the NPK+FYM treated plots compared with NPK (41.76 Mg C/ha) after 9 years under irrigation. Mean (across treatments) total C added under the rainfed and irrigated systems was 2.67 and 3.03 Mg/ha.year, respectively. It was estimated that ~20 and 25% of the gross C input contributed towards the increase in SOC content under the rainfed and irrigated systems, respectively. Carbon loss from native soil organic matter (SOM) averaged ~61 and 261 kg C/ha.year under the rainfed and irrigated systems, respectively. Furthermore, mean stabilisation of added C in the plots under the rainfed condition (~16%) was higher than that (~13%) observed under the irrigated condition. Conversion of total added C to SOC was similar in the NPK and NPK+FYM treated plots under both growing conditions. In the NPK+FYM plots, ~38 and 29% of the C added through FYM was accounted for in the form of total SOC under the rainfed and irrigated conditions, respectively. The estimated quantity of biomass C required to maintain equilibrium SOM content under the rainfed and irrigated systems was 0.29 and 1.08 Mg/ha.year. The total annual C input by the soybean-wheat rotation in the unfertilised control plots under rainfed condition was 0.87 Mg/ha.year and with N fertiliser only under the irrigated condition was 1.75 Mg/ha.year. Thus, SOC augmentation under long-term soybean-wheat cropping was due to higher annual C input than the required amount to maintain equilibrium SOM content. Although FYM addition along with NPK improved total SOC stock and carbon sequestration potential, it did not encourage the stabilisation rate of added C. Hence, C stabilisation that takes into account the total C added in the system is a better indicator of assessing SOC sequestration. In summary, mineral fertilisation improved C sequestration capacity of soybean-wheat system in the Indian Himalayas and manure addition along with mineral fertilisers further improved it.
- Authors:
- Salado-Navarro, L. R.
- Sinclair, T. R.
- Source: Agricultural Systems
- Volume: 102
- Issue: 1/3
- Year: 2009
- Summary: Cropping schemes have developed in east-central Argentina for rainfed soybean (Glycine max Merr.) production that invariably employ no-tillage management. Often these schemes include growing soybean in a sequence of crops including wheat ( Triticum aestivum L.) and maize ( Zea mays L.). The full impact of various rotation schemes on soil water balance through a sequence of seasons has not been explored, although the value of these rotations has been studied experimentally. The objective of this work was to investigate through simulations, potential differences in temporal soil water status among rotations over five years. In this study, mechanistic models of soybean (Soy), maize (Maz), and wheat (Wht) were linked over a five-years period at Marcos Juarez, Argentina to simulate soil water status, crop growth, and yield of four no-till rotations (Soy/Soy, Soy/Wht, Soy/Maz, and Soy/Maz/Wht). Published data on sowing dates and initial soil water contents in the first year from a no-till rotation experiment were used as inputs to the model. After the first year, soil water status output from the model was used to initiate the next crop simulation in the sequence. The results of these simulations indicated a positive impact on soil water balance resulting from crop residue on the soil surface under no-till management. Continuous soybean and the two-year soybean/maize rotation did not efficiently use the available water from rainfall. Residue from maize was simulated to be especially effective in suppressing soil evaporation. Thus, the Soy/Maz simulation results indicated that this rotation resulted in enhanced soil water retention, increased deep water percolation, and increased soybean yields compared with continuous soybean crops. The simulated results matched well with experimental observations. The three-crop rotation of Soy/Maz/Wht did not increase simulated soybean yields, but the additional water retained as a result of decreased soil evaporation resulting from the maize residue allowed the addition of a wheat crop in this two-year rotation. Simulated soybean yields were poorly correlated with both the amount of soil water at sowing and the rainfall during the cropping period. These results highlight the importance of temporal distribution of rainfall on final yield. These models proved a valuable tool for assessing the consequences of various rotation schemes now being employed in Argentina on temporal soil water status, and ultimately crop yield.
- Authors:
- Sandor, M.
- Domuta, C.
- Samuel, A. D.
- Vuscan, A.
- Source: Research Journal of Agricultural Science
- Volume: 41
- Issue: 2
- Year: 2009
- Summary: Agricultural practices that reduce soil degradation and improve agricultural sustainability are needed particularly for preluvosoil. No-tillage planting causes minimal soil disturbance and combined with crop rotation may hold potential to meet these goals. Soil enzyme activities can provide information on how soil management affects the soil potential to perform processes, such as decomposition and nutrient cycling. Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase) were determined in the 0-20-, 20-40- and 40-60-cm layers of a preluvosoil submitted to a complex tillage (no-till and conventional tillage) and crop rotation (2- and 6-crop rotations) experiment. Each activity in both non-tilled and conventionally tilled soil under all crops of both rotations decreased with increasing sampling depth. No-till - in comparison with conventional tillage - resulted in significantly higher soil enzymatic activities in the 0-20- and in significantly lower activities in the deeper layers. The soil under maize or wheat was more enzyme-active in the 6- than in the 2-crop rotation. In the 2-crop rotation, higher enzymatic activities were recorded under wheat than under maize. The enzymatic indicators of soil quality were calculated from the values of enzymatic activities determined in the plots of the 6-crop rotation. The results obtained show that the different hierarchies of the six plots as registered in 2008 may be related to the different nature of crops and kind of fertilisers. This means that by determination of enzymatic activities, valuable information can be obtained regarding fertility status of soils.
- Authors:
- Rufty, T.
- Smyth, T. J.
- Novais, R. F.
- Correa, T. F. C.
- Silva, I. R.
- Silva, E. F.
- Gebrim, F. O.
- Nunes, F. N.
- Source: Revista Brasileira de Ciência do Solo
- Volume: 33
- Issue: 1
- Year: 2009
- Summary: The protective effect of cations, especially Ca and Mg, against aluminium (Al) rhizotoxicity was extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soyabean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soyabean cultivars to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying; and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol litre -1 Mg to solutions containing toxic Al increased Al tolerance in 15 soyabean cultivars. This caused soyabean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soyabean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Magnesium application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soyabean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, maize, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.