- Authors:
- Arendt, E.
- Zannini, E.
- Bez, J.
- Czerny, M.
- Wolter, A.
- Hager, A.
- Czerny, M.
- Source: European Food Research and Technology
- Volume: 235
- Issue: 2
- Year: 2012
- Summary: Bread is a major staple food consumed daily in all parts of the world. A significant part of the human population cannot tolerate gluten, a storage protein found in wheat, rye and barley, and therefore, products made from alternative cereals are required. During this study, the bread-making potential of seven gluten-free flours, wheat and wholemeal wheat flour was compared. Fermentation potential of the different flours was determined, showing that dough development height of gluten-free and wholemeal wheat samples was lower than for wheat and oat flour. Apart from standard bread quality parameters such as loaf-specific volume and physical crumb texture, also water activity and shelf life have been determined. The shelf life of gluten-free breads was reduced compared to wheat bread. Aroma profiles were evaluated by a trained panel. Wheat, oat and wholemeal wheat breads were liked moderately, while the remaining samples had lower liking scores. Crumb grain characteristics were investigated using image analysis, and microstructure was observed by scanning electron microscopy. Overall, only breads produced from oat flour were of similar quality to wheat bread, and the utilization of buckwheat, rice, maize, quinoa, sorghum and teff flours resulted in breads of inferior quality.
- Authors:
- Schlegel, A.
- Halvorson, A.
- Source: Agronomy Journal
- Volume: 104
- Issue: 5
- Year: 2012
- Summary: Limited irrigation management practices are being used in the Central Great Plains to conserve water by optimizing crop water use efficiency. Limited irrigation may reduce total crop biomass production and amount of crop residue returned to the soil. Crop residue production within four no-till (NT) crop rotations [continuous corn ( Zea mays L.) (CC); corn-winter wheat ( Triticum aestivum L.) (CW); corn-winter wheat-grain sorghum ( Sorghum bicolor L. Moench) (CWS); corn-winter wheat-grain sorghum-soybean [ Glycine max (L.) Merr.] (CWSSb)] was measured and changes in soil organic carbon (SOC) and total soil nitrogen (TSN) stocks were monitored for 10 yr. Crop residue yields varied with crop being produced and with rotation, as did residue N and C returned to the soil. The C/N ratio of the residue varied with crop. The SOC and TSN pools increased with time in all rotations. The rate of gain in SOC and TSN mass for each rotation was 717, 477, 335, and 270 kg SOC ha -1 yr -1 and 114, 92, 87, and 84 kg TSN ha -1 yr -1 for the CC, CW, CWS, and CWSSb rotations, respectively, in the 0- to 30.5-cm soil depth. The rate of change in SOC and TSN mass was lowest with CWSSb (8.7 Mg residue ha -1 yr -1) and highest with CC (12.0 Mg residue ha -1 yr -1). Approximately 6.8 to 7.6 Mg residue ha -1 yr -1 would be needed to maintain SOC stocks under limited irrigation.
- Authors:
- Nerg, A.
- Kivimaenpaa, M.
- Hartikainen, K.
- Holopainen, T.
- Source: Botany-Botanique
- Volume: 90
- Issue: 2
- Year: 2012
- Summary: To study the possible differences in tropospheric ozone (O 3) tolerance of oat ( Avena sativa L.) and wheat ( Triticum aestivum L.), two oat and two wheat cultivars were exposed to 0, 50, or 100 nL.L -1 O 3 concentrations in growth chambers. Measurements on volatile organic counpound emission and physiological, biochemical, and leaf structural characteristics were conducted with 2- and 4-week-old seedlings. Neither of the studied species was particularly O 3 sensitive, but O 3 sensitivity should rather be defined on the basis of the characteristics of the cultivars within species. Visible leaf injuries increased with leaf age and with increasing O 3 concentration. Net photosynthesis ( Pn), stomatal conductance ( gs), and chlorophyll fluorescence ( Fv/ Fm) of 2-week-old seedlings were more detrimentally affected by O 3 compared with older seedlings. Wheat generally invested more in photosynthesis and related processes, such as gs, Fv/ Fm, concentrations of Rubisco, chlorophylls and carotenoids, and synthesis of starch compared with oat. O 3 increased Rubisco concentration in 2-week-old and carotenoid concentration in 4-week-old seedlings, especially in wheat. Lower extent of O 3-caused visible leaf injuries in the other oat cultivar can supposedly be explained by its low stomatal conductance and high monoterpene production.
- Authors:
- Rickard, I.
- Holopainen, J.
- Helama, S.
- Source: Holocene
- Volume: 22
- Issue: 8
- Year: 2012
- Summary: Climate and weather variation affect agricultural productivity, with consequences for both overall food availability and the wider economy. Knowledge of these processes has implications for understanding historical demography and predicting effects of climate change on societies. We studied the relationships between ambient temperature and the yields and prices of principle grains (wheat, rye, barley oats) in Sweden from 1803 to 1914. We found that the annual general crop index (a measure of overall crop yield) correlated negatively with the annual average price of the four grains. Overall temperature during the period of crop growth was related positively to general crop index and negatively to average crop price. At the level of month of crop growth, when the relationship between temperature and general crop index was most positive, that between temperature and average crop price was most negative. This strong structured relationship was found to be consistent when yields of each crop were considered separately, and indicates that the relationships between crop yield and crop price were to a large extent due to the influence of ambient temperature. Price correlations between pairs of crop species were in all cases greater than the correlation of yields. Within individual crops, correlations between price and yield were stronger for those crops for which imports were not available, and which were therefore subject to the weakest influence from rising globalisation. Our analyses demonstrate the sensitivity of historical agriculture to climatic factors, and the extent to which this affected the wider economy. It is likely that the susceptibility of agriculture to climatic risks was ascended by the concomitant climate regime, the 'Little Ice Age'. Moreover, our study period spans the period of rising globalisation, and suggests a weakening influence of prevailing weather on crop prices.
- Authors:
- Lamberg-Allardt, C.
- Kemi, V.
- Ekholm, P.
- Itkonen, S.
- Source: Journal of Food Composition and Analysis
- Volume: 25
- Issue: 2
- Year: 2012
- Summary: The bioavailability of phosphorus (P) in foodstuffs is mostly unknown. The aim of this study was to test a method for in vitro digestible phosphorus (DP) analysis and analyse the DP content in variously processed cereal products by an in vitro method combined with inductively coupled plasma-mass spectrometry (ICP-MS). For DP analysis the samples were treated as chyme by adding alpha-amylase and proteases. The samples were dialysed, using equilibrium dialysis, and the DP was analysed by ICP-MS. The amount of total phosphorus (TP) was also analysed by ICP-MS. In soured wheat and rye breads, the proportion of DP/TP was higher (DP/TP: rye 83%, wheat 78%) than in flours (DP/TP: rye 45%; wheat 43%) or non-soured breads (DP/TP: wheat 46%). This indicates that, during processing, phytic acid degrades and releases soluble inorganic P, which increases the DP content. The DP content in the cereals was significantly lower than the TP content, which indicates that not all dietary P may be absorbed in the human body.
- Authors:
- Moffet, M.
- Menalled, F.
- Miller, Z.
- Ito, D.
- Burrows, M.
- Source: Plant Disease
- Volume: 96
- Issue: 8
- Year: 2012
- Summary: Wild grasses, crops, and grassy weeds are known to host Wheat streak mosaic virus (WSMV) and its vector, the wheat curl mite (WCM). Their relative importance as a source of WSMV was evaluated. A survey of small-grain fields throughout Montana was conducted between 2008 and 2009. Cheatgrass was the most prevalent grassy weed and the most frequent viral host, with 6% infection by WSMV in 2008 ( n=125) and 15% in 2009 ( n=358). By mechanically inoculating plants with WSMV in the greenhouse, the highest susceptibility was found in rye brome (52.1%), jointed goatgrass (80.9%), and wild oat (53.9%). Quackgrass, not previously reported as a host, was susceptible to WSMV (12.7%). Mite transmission efficiency from susceptible grass species was lower than from wheat, and grass species must be a host for both WSMV and the WCM to serve as a virus source. WCM transmission was more efficient than mechanical transmission. Overall, results indicate that grass species can serve as a viral reservoir, regional variation in a weed species' susceptibility to WSMV cannot explain geographic variation in epidemic intensity, and crop species and closely related weeds (e.g., jointed goatgrass) remain the best reservoirs for both WSMV and the WCM.
- Authors:
- Jaskulski, D.
- Osinski, G.
- Jaskulska, I.
- Madry, A.
- Source: Fragmenta Agronomica
- Volume: 29
- Issue: 1
- Year: 2012
- Summary: Drawing on the statistical survey performed over 2010-2011 on 155 farms in the Kujawy and Pomorze region, there was evaluated cultivar diversity for basic field crops and it was compared in the sown crops of winter wheat, spring barley, winter triticale, rye, maize, winter rape, sugar beet and potato. The following were determined: the knowledge of crop cultivars sown by farmers on production plantations and the most frequently grown cultivars, their number to the number of plantations of that species, diversity and domination defined using the Shannon-Wiener and Simpson indices. It was found that on 15.8-43.4% plantations the cultivars were not known to the farmers, most in the sown crops of spring barley. The best knowledge was recorded for the cultivars of winter wheat, winter rape and potato. A high richness of cultivars, expressed with the number of cultivars to the number of plantations, concerned the crops of potato, sugar beet and maize and the lowest richness - rye. The highest cultivar diversity of crops occurred in the sown winter wheat, winter triticale, winter rape, corn and spring barley. The lowest diversity, however, at the same time, the highest cultivar dominance, was recorded for sugar beet, potato and rye. The highest share of a single cultivar in the sown crop of the species was reported for 'Californium' winter rape, 'Dankowskie Zote' rye and 'Lord' potato.
- Authors:
- Polyanskaya, N.
- Suslov, S.
- Kuchin, N.
- Source: Ekonomika Sel'skokhozyaistvennykh i Pererabatyvayushchikh Predpriyatii
- Issue: 3
- Year: 2012
- Summary: In 2009, production of leguminous and cereal grain crops in Russia's Nizhny Novgorod Oblast' totalled 1 432 400 tonnes, and the average crop yield was 2.44 tonnes/ha - the highest yield in 50 years. However extremely hot and dry weather conditions in 2010 caused a sharp reduction in harvest volumes, so that Nizhny Novgorod Oblast' had a total harvest of just 541 500 tonnes and an average crop yield of 1.36 tonnes/ha. 2010 harvest figures for the region were significantly lower than in 2006, when the total harvest volume was 1 169 900 tonnes and the average crop yield 2.05 tonnes/ha. Crop yields in Nizhny Novgorod Oblast' vary significantly between years, with yields being highly dependent on climate conditions. The greatest variation in yields occurs with maize, millet, and buckwheat crops. Strong variation in yields is also evident for wheat and leguminous crops, and moderate variation occurs in yields of rye, barley, and oats. For agricultural enterprises, the most significant factor influencing their production volumes and incomes is the structure of crops produced. The structure of crops produced in Nizhny Novgorod Oblast' has changed significantly since the pre-reform period, with a marked shift towards cultivation of food grade cereal grains, and away from production of feed crops. In 2010, wheat accounted for 56.8% of the region's total harvest, barley 21.9%, oats 10.7%, rye 7.6%, legumes 2.5%, triticale 0.4%, and groats crops 0.1%. Agricultural organizations continue to be the main cereal grain producers, despite increases in land areas used for cereal grain cultivation by private (peasant) farmers. In 2010, agricultural enterprises accounted for 92.2% of cereal grain production. Individual secondary farms account for only an insignificant proportion of grain crop production. Problems faced by enterprises operating in the region's cereal grain segment include a poor technical base, low rates of fertiliser application, and difficulties in securing suitably qualified workers. Approximately 80% of machines used by these enterprises have been in use for longer than their intended operating life. These problems have adverse effects on the efficiency of harvesting operations and on crop yields. It is important to address these issues if higher and more stable production volumes are to be achieved, and the profitability of crop production activities improved.
- Authors:
- Lindedam, J.
- Bruun, S.
- Larsen, S.
- Source: Biomass & Bioenergy
- Volume: 45
- Year: 2012
- Summary: Straw is a by-product from cereal production which constitutes a considerable biomass resource, for instance for 2G ethanol production. Straw yield per hectare and straw quality in terms of ethanol production are both important factors for the available biomass resource and the potential ethanol production per hectare. In a series of field trials on three locations in 2009, we compared straw and grain yield from the winter cereal species triticale, winter barley, winter rye, and winter wheat. Grain yield did not differ significantly between the species, but winter rye yielded up to 59% more straw dry matter than the other species. The release of glucose and xylose after pretreatment and enzymatic hydrolysis i.e. the saccharification potential was used to indicate the potential for ethanol production. The saccharification potential did not differ between species, but due to the differences in straw yield, areal saccharification potential (i.e. potential sugar production per hectare) was from 29% to 78% higher for winter rye than for other species. In a series of winter wheat cultivar trials on two locations in 2008 and three locations in 2009, straw yield differed significantly between cultivars in both years and across years. The highest yielding cultivar yielded up to 57% and 37% more straw than the lowest yielding cultivar in the two years, respectively, even among cultivars with non-significant differences in grain yield. The saccharification potential was measured from straw of winter wheat cultivar trials harvested in 2009. The potential varied largely but was not significantly affected by neither cultivar nor location. Due to cultivar differences in straw yield, however, areal saccharification potential differed significantly between cultivars with up to 38% difference in glucose yield and up to 35% in xylose yield. Straw yield increased with increasing grain yield, but the straw:grain ratio differed significantly between cultivars and was not consistent across years and locations. This has implications for straw resource estimates when these are based on the relationship between grain yield and straw yield. In conclusion, it appears possible to choose species and cultivars with higher straw yield and consequently larger potential for ethanol production per hectare without compromising grain yield. This may provide a means of increasing the overall straw resource, as long as increased straw yield is not accompanied by negative effects such as increased tendency to lodging.
- Authors:
- Source: Journal of Plant Protection Research
- Volume: 52
- Issue: 1
- Year: 2012
- Summary: Winter cereals (wheat, triticale, rye, barley) grown in experimental fields were assessed for sharp eyespot. Preceding crops (spring cereals and fallow) and weed control (herbicides application, no control) were taken into account. The health status evaluation was carried out at the stem elongation phase and at the milk maturity stage. The macroscopic estimation was accompanied by the analysis of fungal species identified on stem bases and roots, which showed various disease symptoms. The analysis of fungal species from the genus Rhizoctonia were especially noted. Mycological analysis of roots was carried out at the seedling growth and stem elongation phase, and stem bases at the seedling growth and milk maturity stage. Infection caused by Rhizoctonia spp. was confirmed by polymeraze chain reaction (PCR) assay. The highest infection was noted on wheat followed by triticale, rye and barley. Occurrence of sharp eyespot depended more on weed control than on what the preceding crop had been. At the milk maturity stage, lower severity of sharp eyespot of triticale, rye and barley was noted on plots not treated with herbicides, and on wheat with herbicide application. The research showed a significant effect of the preceding crop only on the health status of wheat. At the milk maturity stage, the highest infection was noted after spring triticale and the lowest after oats. Stems of cereals with sharp eyespot symptoms and healthy stems were settled mainly by Rhizoctonia cerealis (wheat - 25.6%, triticale - 12.0%, rye - 22.2%, barley - 11.3%), rarely by R. solani (respectively 6.0, 4.0, 2.9 and 1.8%). Rhizoctonia solani was isolated more often from roots with true eyespot and Fusarium foot rot symptoms. It may suggest that R. cerealis was the main causal agent of sharp eyespot on all tested cereals. The preceding crop did not affect the composition of Rhizoctonia species.