• Authors:
    • Walling, D. E.
    • Russell, M. A.
    • Taylor, P.
    • Ficken, K. J.
    • Blake, W. H.
  • Source: Geomorphology
  • Volume: 139
  • Year: 2012
  • Summary: A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 +/- 0.02 t ha(-1)) was considerably less than that for winter wheat (0.44 +/- 0.15 t ha(-1)). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha(-1)). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research into CSSI signature development (plant and soil processes) and the influence of cultivation regimes are required to support future development of this new tool. (C) 2011 Elsevier B.V. All rights reserved.
  • Authors:
    • Higginbotham, R. W.
    • Jones, S. S.
    • Carter, A. H.
  • Source: Sustainability
  • Volume: 3
  • Issue: 8
  • Year: 2011
  • Summary: In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to evaluate current cultivars under late-planted no-till fallow systems to identify whether current breeding schemes in tilled fallow systems could select productive cultivars in late-planted no-till fallow systems. Thirty cultivars were planted in a split-plot design with fallow type as the main plot and genotype as the sub-plot. Fallow types evaluated were a tilled fallow system and a late planted no-till fallow system. Data were collected on heading date, plant height, grain volume weight, grain yield, and grain protein content. Analysis of variance was conducted on data across locations. Results were significant for all traits except for grain protein content. The late-planted no-till fallow system headed 16 days later was 5 cm shorter, yielded 36% less, and had a grain volume weight 3% less than the tilled fallow system. The lower yield and grain volume weight potential is hypothesized to be due to the 16 day delay in heading date leading to warmer temperatures during grain fill and a shorter duration. In order to breed wheat to be highly productive under a late-planted no-till fallow system, directly selecting in this system for early spring growth and earlier heading dates will be essential.
  • Authors:
    • Beasley, J. P.,Jr.
    • Tubbs, R. S.
    • Lee, R. D.
    • Grey, T. L.
    • Jackson, J. L.
  • Source: Peanut Science
  • Volume: 38
  • Issue: 1
  • Year: 2011
  • Summary: Most peanut ( Arahcis hypogaea L.) production occurs under highly intensive conventional tillage systems. With recent volatility in input prices, reducing tillage trips is a viable way of reducing production costs. However, growers can experience yield loss when switching from conventional tillage to strip-tillage in peanut on certain soil types due to the lack of an elevated bed at harvest time. Studies were conducted to compare standard strip-till with strip-till on two-row raised beds as well as rip and beds prepared in the fall. Comparisons were made on a coarse textured soil at Tifton, GA and a fine textured soil at Plains, GA. The three bed types, with and without wheat cover, were evaluated over two years at both locations. No effects of cover or interactions with bed type were present. At Plains, the rip and bed and raised bed reduced digging losses by 62 and 47%, respectively. Soil compaction within the harvest depth was reduced by 3.3 and 4.7 times by the raised bed and rip and bed, respectively compared to flat strip-till. The rip and bed increased peanut yield by 465 kg ha -1 over flat bed. At Tifton, no significant differences in yield or digging losses occurred between tillage methods. Soil compaction in the harvest depth was reduced by 1.9 and 2.5 times by raised bed and rip and bed, respectively on this coarse soil type. Reduced compaction and digging losses along with increased yield suggest bedding is more important on finer textured soils.
  • Authors:
    • Kocyigit, R.
    • Rice ,C. W.
  • Source: Bulgarian Journal of Agricultural Science
  • Volume: 17
  • Issue: 4
  • Year: 2011
  • Summary: The soil surface CO 2 flux is the second largest flux in the terrestrial carbon budget after photosynthesis. Plant root and microbial respiration produce CO 2 in soils, which are important components of the global C cycle. This study determined the amount of CO 2 released during spring wheat ( Triticum aestivum L.) growth under no-till (NT) and conventional tillage (CT) systems. This experiment was conducted at Kansas State University North Agronomy Farm, Manhattan, KS, on a Kennebec silt loam. This study site was previously under dry land continuous corn production with NT and CT for more than 10 years. Spring wheat ( Triticum aestivum L.) was planted with two tillage systems (NT and CT) as four replicates in March. Surface CO 2 flux was measured weekly during plant growth. Soil water content at the surface (5 cm) tended to be greater in NT and decreased from planting to harvest. Soil microbial activity at the surface was usually higher in NT and decreased from planting to harvest, while activity was constant in the deeper depths. The higher microbial activity at the surface of NT occurred after 60 days of planting where soil water content was the most limiting factor on microbial activity. Soil CO 2 flux varied in response to changes in soil water content and the variation and magnitude of the increase was greater at higher soil water contents. Conventional tillage released 20% more CO 2 to the atmosphere compare to NT after 10 years in the North American Great Plains Regions.
  • Authors:
    • Kutcher, H. R.
    • Johnston, A. M.
    • Bailey, K. L.
    • Malhi, S. S.
  • Source: Field Crops Research
  • Volume: 124
  • Issue: 2
  • Year: 2011
  • Summary: The impact of tillage system, rotation sequence and foliar fungicides on diseases and seed yield and quality of wheat, barley, pea, canola and flax was determined in the second cycle of three, 4-year rotations from 1998 to 2001 on a Black Chernozem (Udic Boroll) at Melfort, Saskatchewan, Canada. The objective of the study was to evaluate the impact of reduced-tillage production systems, broadleaf cropping intensity and fungicide use on cereal, oilseed and pulse crops in northeastern Saskatchewan, a sub-humid region of the northern Great Plains. A split-split plot design was used with three tillage systems (conventional, minimum and no-till) as main plots, three rotations of increasing broadleaf crop intensity (1. canola-wheat-barley-barley; 2. canola-barley-pea-wheat; and 3. canola-pea-flax-barley) as sub-plots, and fungicide treatments (treated or untreated) as sub-sub-plots. Fungicides appropriate for the diseases of concern were applied at recommended crop development stages and application rates, followed by assessment of diseases. Tillage system had little impact on diseases of any crop, although seed yield was usually greater under no-till for most crops under dry conditions. Rotation was not a major factor in disease severity of most of the crops, except barley in the rotation where it was grown for two consecutive years. Under dry conditions, barley yield was reduced when it followed flax compared with other crops, most likely due to less available soil moisture after flax. Fungicide application had the greatest impact on disease control and seed yield increase, although results varied among crops and years. In conclusion, the findings indicate that tillage system had little effect on disease severity, rotation contributed to greater disease severity only when a crop was grown intensively, such as on its own stubble, and fungicide application had variable effects on both disease control and seed yield.
  • Authors:
    • Walley, F.
    • May, W. E.
    • Holzapfel, C. B.
    • Lafond, G. P.
  • Source: Soil & Tillage Research
  • Volume: 117
  • Year: 2011
  • Summary: Meeting the needs of an increasing population requires protection of our arable land base and improvements in productivity. The study compared soil quality characteristics and crop yield to nitrogen (N) fertilizer in two adjacent fields; one field managed with no-till for 31 years while the other for 9 years. In 2003, the two fields along with native prairie were sampled for soil quality parameters across two landscape positions. A small plot study involving five rates of urea N (0, 30, 60 90 and 120 kg N ha -1) and two phosphorus fertilizer placement methods (seed-placed vs side-banded) was conducted on the two adjacent fields for the period 2002-2009. The rates of N were superimposed on the same plots each year whereas wheat and canola were normally grown in alternate years. An N balance was conducted after 8 years to account for inputs and outputs of N. Soil bulk density values were 0.98 g cm -3 for native prairie and 1.46 for LTNT and STNT in the 0-15 cm soil layer. The native prairie had 48.2 t ha -1of SOC vs 44.4 and 36.7 for LTNT and STNT, respectively, in the 0-15 cm soil layer and no detectable differences for the 15-30 cm soil layer in 2003. Potentially mineralizable N using the Hot KCl digestion in the 0-15 cm soil layer was 60 kg ha -1 of ammonium nitrogen for native prairie and 30 and 22 kg ha -1 for LTNT and STNT, respectively. For amino sugar-N, native prairie had 558 kg ha -1 vs 462 and 370 kg ha -1 for the LTNT and STNT, respectively. This indicates a positive relationship between SOC levels measured and potentially mineralizable N reflecting differences in land management. Phosphorus fertilizer placed in the side-band with N yielded 3.5% more than seed-placed phosphorus in spring wheat and no difference in canola. Grain yields were 14% and 16% more for LTNT than STNT in spring wheat and canola, respectively. Maximum grain N removal averaged in wheat was 87 kg ha -1 for LTNT and 74 kg ha -1 for STNT and 71 and 65.4 kg ha -1 in canola, respectively. A positive N balance was obtained provided that 60 kg ha -1 of N was applied every year and no accumulation of nitrate-N was noted even with rates that exceeded N removal in the grain. This supports the view that no-till combined with continuous cropping and proper fertility represents a path to sustaining the global soil resource.
  • Authors:
    • Lal, R.
  • Source: Food Policy
  • Volume: 36
  • Issue: S1
  • Year: 2011
  • Summary: Soils of the world's agroecosystems (croplands, grazing lands, rangelands) are depleted of their soil organic carbon (SOC) pool by 25-75% depending on climate, soil type, and historic management. The magnitude of loss may be 10 to 50 tons C/ha. Soils with severe depletion of their SOC pool have low agronomic yield and low use efficiency of added input. Conversion to a restorative land use and adoption of recommended management practices, can enhance the SOC pool, improve soil quality, increase agronomic productivity, advance global food security, enhance soil resilience to adapt to extreme climatic events, and mitigate climate change by off-setting fossil fuel emissions. The technical potential of carbon (C) sequestration in soils of the agroecosystems is 1.2-3.1 billion tons C/yr. Improvement in soil quality, by increase in the SOC pool of 1 ton C/ha/yr in the root zone, can increase annual food production in developing countries by 24-32 million tons of food grains and 6-10 million tons of roots and tubers. The strategy is to create positive soil C and nutrient budgets through adoption of no-till farming with mulch, use of cover crops, integrated nutrient management including biofertilizers, water conservation, and harvesting, and improving soil structure and tilth.
  • Authors:
    • Li, W.
    • He, R.
  • Source: Journal of Yunnan Agricultural University
  • Volume: 26
  • Issue: 4
  • Year: 2011
  • Summary: Jianghuai region is one of the major grain producing areas in China, where planting has high energy consumption. In addition, greenhouse gases displacement of planting is larger than ever, and the phenomenon of straw burned is extremely serious. To solve the problem, the multifunctional no-till wheat and paddy planter was designed with the technique of mechanized cultivation of energy-saving emission reduction. Combing with controlled traffic tillage and strip chopping anti-blocking mechanism, it could be used to returning corn stalks to the filed, fertilizing, seeding, covering and so on. The filed experiment indicates that the machine can decrease operating power consumption, and its steering ability is outstanding.
  • Authors:
    • Yang, X.
    • Li, C.
    • Liu, L.
    • Liu, Z.
  • Source: Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery
  • Volume: 42
  • Issue: 2
  • Year: 2011
  • Summary: The 2BMG-24Q pneumatic no-till wheat planter was designed. Seeds were transported into seeder pipes with high-speed air current to perform precision metering. The wavy disc coulters were used to cut stubble for sowing, and the double disc coulters were used to open furrow for fertilizing. The test results showed that the quanlification percent of seed depth and fertilizer depth were 88.3% and 85.2%, respectively.
  • Authors:
    • Ma, E.
    • Ma, J.
    • Xu, H.
    • Cai, Z.
    • Yagi, K.
  • Source: Acta Pedologica Sinica
  • Volume: 48
  • Issue: 5
  • Year: 2011
  • Summary: To study effect of timing of topdressing on N 2O emission from wheat fields during the period from the jointing stage till the maturing stage of wheat, a field experiment was conducted to have three topdressing schedules (top-dressing before rain, topdressing during rain and topdressing after rain) in jointing-maturing stage of wheat from 2007 to 2008. Results show that N 2O emission was 37%-67% and 22%-46% less in fields topdressed after rain, than in fields topdressed before rain and during rain, respectively. No significant difference was observed between the treatments in wheat grain yield ( p>0.05). Soil water content was the key factor affecting N 2O emission during that wheat growing season. Topdressing after rain when soil was wet is an appropriate topdressing method, which may decrease N 2O emission significantly in the wheat-growing season with no adverse effect on wheat yield.