- Authors:
- Source: 45th Croatian & 5th International Symposium on Agriculture
- Year: 2010
- Summary: In non-irrigated treatment the maximum yields of winter wheat were 5590 kg ha -1 in biculture (maize-wheat) and 7279 kg ha-1 in triculture (peas-wheat-maize) in 2007 year characterized by water-deficit stress. In 2008 (optimum rain amount and distribution) the maximum yields were 7065 kg ha -1 (biculture) and 8112 kg ha -1 (triculture) in non irrigated conditions. The fertilization surpluses of wheat were 2853-3698 kg ha -1 (non-irrigated) and 3164-5505 kg ha -1 (irrigated) in a dry cropyear (2007) and 884-4050 kg ha -1 (non-irrigated) and 524-3990 kg ha -1 (irrigated) in an optimum cropyear (2008). The optimum fertilizer doses varied N150-200+PK in biculture and N50-150+PK in triculture depending on cropyear and irrigation. The optimalization of agrotechnical elements provides 7,8-8,5 t ha -1 yields in dry cropyear and 7,1-8,1 t ha -1 yields of wheat in good cropyear, respectively. Our scientific results proved that in water stress cropyear (2007) the maximum yields of maize were 4316 kg ha -1 (monoculture), 7706 kg ha -1 (biculture), 7998 kg ha -1 (triculture) in non irrigated circumstances and 8586 kg ha -1, 10 970 kg ha -1, 10 679 kg ha -1 in irrigated treatment, respectively. In dry cropyear (2007) the yield-surpluses of irrigation were 4270 kg ha -1 (mono), 3264 kg ha -1 (bi), 2681 kg ha -1 (tri), respectively. In optimum water supply cropyear (2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha -1 (bi), 13 987-14 180 kg ha -1 (tri) so there was no crop-rotation effect. We obtained 8,6-11,0 t ha -1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha -1 in optimum cropyear on chernozem soil with using appropriate agrotechnical elements.
- Authors:
- Siebert, S.
- Portmann, F. T.
- Doll, P.
- Source: Global Biogeochemical Cycles
- Volume: 24
- Issue: 1
- Year: 2010
- Summary: To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km 2 harvested area), wheat (2.1 million km 2), and maize (1.5 million km 2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km 2 and 1.2 million km 2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km 2), followed by wheat (0.7 million km 2) and maize (0.3 million km 2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.
- Authors:
- Source: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Division Symposium 3.2 Nutrient best management practices
- Year: 2010
- Summary: While globally fertilizers have had a major impact on food production for the past half-century, the general use of chemical fertilizers in the semi-arid areas of the world is a more recent development. This is particularly true of the Mediterranean region, especially in North Africa and West Asia. Traditionally, the cropping system involved growing cereals (barley and wheat) in rotation with fallow to conserve moisture; sheep and goats were an integral part of the low-input system. Drought was a constant constraint on crop yields. In the past few decades, significant developments have occurred to increase agricultural output; new high-yielding disease resistant varieties; mechanization; irrigation; pest control; and particularly the use of chemical fertilizers as a supplement to the limited animal manures available. Research at the International Center for Agricultural Research in the Dry Areas (ICARDA) in collaboration with the national agricultural systems in the mandate countries of the region has made significant strides in fertilizer research. While much has been achieved in terms of best fertilizer management practices, much remains to be done. This presentation examines the use of fertilizers under the headings of the best management practice concept; right source, right application rate, right time of application, and right place. As fertilizer use will expand in the Mediterranean region, efficiency of use will be an underlying consideration. As agricultural land is on a global level is finite, with limited possibilities to expand cultivation, the increasing population of the world has correspondingly increased the needs for food and fibre. An inevitable development has been intensification of land use, particularly in developing countries of the world, leading to poverty and increased concerns about food security (Borlaug 2007). Pressure on land has been particularly acute in the arid and semi-arid regions, which are characterized by drought and land degradation. The lands surrounding the Mediterranean have been cultivated for millennia and are the site of settled agriculture and the center of origin of some of the world's major crops, especially cereals and pulses. Much development efforts have centered on the West Asia- North Africa (WANA) area, which is characterized by a Mediterranean climate and where drought is the main production constraint (Smith and Harris 1981).
- Authors:
- Wrigley, C. W.
- Batey, I. L.
- Source: Cereal grains: assessing and managing quality
- Year: 2010
- Summary: This book provides a convenient and comprehensive overview of academic research and industry best practice in the assessment and management of cereal grain quality. It includes 18 chapters and 2 appendices organized into 5 parts. Part I (3 chapters) introduces the themes of the book, reviews cereal grain morphology and composition, and discusses the diversity of uses of cereal grains. Part II (7 chapters) describes the characteristics and quality requirements of particular cereals, including wheat, rye, triticale, barley, oats, maize, rice, sorghum and millets. Part III (3 chapters) covers the use of analytical methods at different stages of the value-addition chain. It discusses the analysis of grain quality at receival, identification of grain variety and quality type, and food safety aspects of grain and cereal product quality. Part IV (5 chapters) reviews the factors affecting grain quality, such as breeding, storage and grain processing, and discusses possible future developments. Part V includes appendices on the composition of grains and grain products and the equivalence between metric and US units for the grain industry. This book will be a valuable reference for all those involved in the production and processing of cereal grains worldwide.
- Authors:
- Wang, L.
- Chen, Z.
- Chen, X.
- Wan, Y.
- Yang, W.
- Gong, W.
- Yan, Y.
- Source: PLANT PRODUCTION SCIENCE
- Volume: 13
- Issue: 4
- Year: 2010
- Summary: The relay strip intercropping system of wheat-corn-soybean is widely used in southwest China. However, it is hard to obtain a stable production of soybean with this system, since soybean plants grow under shading by corn; the stems are thinner and susceptible to lodging. We examined the effects of seed treatment with uniconazole powder (0, 2, 4 and 8 mg kg -1 seed) on the growth of soybean seedlings under relay strip intercropping, some morphological characteristics and yield. The seedling height, first internode length, cotyledonary node height and leaf area per plant were decreased, while the stem diameter, root dry weight, shoot dry weight, root volume, leaf greenness and root to shoot dry weight ratio were increased by uniconazole treatment. The root vigor and root active absorption area were also increased significantly by uniconazole treatment. Moreover, 2 and 4 mg kg -1 uniconazole powder treatment increased shoot dry weight, number of pods per plant, number of seeds per pod and seed yield significantly. Thus, the results suggested that seed treatment with uniconazole powder at a suitable concentration can improve soybean seedling growth, resist the lodging and also increase the seed yield under shading by corn in relay strip intercropping system.
- Authors:
- Huang, G.
- Chai, Q.
- Yang, C.
- Source: Zhongguo Shengtai Nongye Xuebao / Chinese Journal of Eco-Agriculture
- Volume: 18
- Issue: 4
- Year: 2010
- Summary: A field experiment was carried out to investigate the effect of alternative irrigation on water consumption, yield and water use efficiency ( WUE) under wheat-maize intercropping in the oasis region of Shiyang River Basin, Gansu Province. The results indicate that evaporation for alternative irrigated intercropping system (AI) decreases by 44.0 mm compared to conventional irrigated intercropping system (CI). Water consumption under AI also increases by 15.4 mm while yield and WUE are respectively enhanced by 13.92% and 9.21% compared to CI. All these results show that alternative irrigation is an effective and practicable way to improve yield and WUE of wheat-maize intercropping. Although evaporation and water consumption in alternative irrigated intercropping system increase with increasing irrigation quota, overall WUE actually decreases.
- Authors:
- Yang,C. H.
- Chai,Q.
- Huang,G. B.
- Source: Plant Soil and Environment
- Volume: 56
- Issue: 6
- Year: 2010
- Summary: A field experiment was conducted to investigate the effects of alternate irrigation (AI) on root distribution and yield of wheat ( Triticum aestivum L.)/maize ( Zea mays L.) intercropping system during the period of 2007-2009 in an oasis of arid north-west China. Five treatments, i.e. sole wheat with conventional irrigation (W), sole maize with alternate irrigation (AM), sole maize with conventional irrigation (CM), wheat/maize intercropping with alternate irrigation (AW/M), and wheat/maize intercropping with conventional irrigation (CW/M). The results showed that root growth was significantly enhanced by alternate irrigation (AI), root weight density (RWD), root length density (RLD) and root-shoot ratios (R/S) in AI treatments were all higher than those in conventional irrigation (CI) treatments. Moreover, intercropped wheat and maize also had a greater root development at a majority of soil depths than wheat and maize in monoculture. In three years, AW/M always achieved the highest total seed yield under different treatments. Higher yield and reduced irrigation resulted in higher water use efficiency (WUE) for the AW/M treatment. Our results suggest that AI should be a useful water-saving irrigation method on wheat/maize intercropping in arid oasis field where intercropping planting is decreased because of limited water resource.
- Authors:
- Source: Scientia Agricultura Sinica
- Volume: 43
- Issue: 1
- Year: 2010
- Summary: Objective: The aim of this study was to investigate the effects of weak light on the photosynthetic characteristics of peanut leaves at the seedling stage and to offer a theoretical basis for the programming of peanut intercropped with wheat. Method: Fenghua 1 was grown in an experiment with four shading treatments (CK, in which the plants were grown under natural light, and 27% shading, 43% shading, 77% shading) and the investigation was carried out at seedling stage using black sunshade net. The chlorophyll content, net photosynthetic rate, photosynthetic curve, fluorescence parameters and photosynthetic enzyme activities were tested. Result: Shading treatment significantly reduced the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO 2 concentration (Ci), light compensation point, light saturation point, CO 2 compensation concentration, CO 2 saturation concentration, carboxylation efficiency, RUBPCase and PEPCase activities along with the shading degree but increased the chlorophyll content, apparent quantum yield, and Phi PS II and Fv/Fm. Real-time low light intensity and long-term shading treatment depressed photosynthetic enzyme activities jointly. Conclusion: Shading at seedling stage depressed Pn significantly, which induced by stomatal limitation and non-stomatal factors (such as decline of photosynthetic ability of mesophyll cell, changes of absorbed light allocation of PS II), improved the capacity of utilization of weak light. Shading of 27% had less influence, and therefore can program plant the standards of intercropping system of wheat and peanut.
- Authors:
- Dong, G.
- Chen, Z.
- Wu, Z.
- Sun, C.
- Chen, L.
- Zhang, Y.
- Source: Plant Soil and Environment
- Volume: 56
- Issue: 11
- Year: 2010
- Summary: Agricultural practices that reduce soil degradation and improve agriculture sustainability are important particularly for dry hilly land of Chaoyang County in the Liaoning Province, North-east China, where cinnamon soils are widely distributed and mainly for wheat production. The impacts of 10-year cropping systems (wheat-cabbage sequential cropping, wheat-corn intercrop, wheat-sunflower rotation, wheat-soybean rotation) on soil enzyme properties of surface-soil (0-20 cm) were studied. Total carbon, nitrogen, phosphorus and sulfur, and nine soil hydrolases related to nutrient availabilities (beta-galactosidase, alpha-galactosidase, beta-glucosidase, alpha-glucosidase, urease, protease, phosphomonoesterase, phosphodiesterase, arylsulphatase) and five enzymes kinetic characters were examined. Wheat-corn intercrop systems had higher total C, total N, total P and total S concentrations than wheat-soybean and wheat-sunflower rotation systems. Most test enzyme activities (alpha-galactosidase, beta-galactosidase, alpha-glucosidase, beta-glucosidase, urease, protease, phosphomonoesterase and arylsulphatase) showed the highest activities under wheat-corn intercropping system. Urease, protease and phosphodiesterase activities of wheat-cabbage sequential cropping system were significantly higher than two rotation systems. The maximum reaction rates of enzymes ( Vmax) were higher than apparent enzyme activity, which suggests larger potential activity of enzymes, while not all kinetic parameters were adaptive as soil quality indicators in dry hilly cinnamon soil.
- Authors:
- Chen, C.
- Xu, Z.
- Wu, H.
- Zhou, X.
- Source: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Working Group 3.5 Paddy soils and water scarcity
- Year: 2010
- Summary: Winter cover crops are not only one of effective agricultural management practices to control weeds but also can improve soil fertility, resulting in increasing crop productions. Up to now, however, little is known about information on how much of soil soluble organic carbon (C) incorporates into the soils applied with winter cover crops, which is a prerequisite to design strategies that improve C sequestration in agricultural ecosystems. The aims of this study were to: (1) assess the effects of winter cover crops on soluble organic carbon (SOC) pools using different extraction methods (KCl extractable organic C; microbial biomass) and microbial community functional diversity, and (2) quantify how much of the potentially mineralizable organic C pools (C 0) incorporates into the soils and associated half-life of SOC remaining under seven cover crops and nil-crop control (CK) in temperate agricultural soils of southern Australia. Cover crop treatments are cereal rye, wheat, saia oats, vetch, field peas, mustard and the mixture of cereal rye and vetch. Results showed that the CK treatment had higher soil moisture content and lower soluble organic nitrogen (SON) compared to the cover crop treatments. Among the cover crop treatments, there was significantly higher SON in the wheat, oats and vetch treatments than in the other treatments. The oats treatment had the highest amount of cumulative CO 2-C than any other treatments over one-month incubation experiment. An exponential regression approach for C mineralization was used to estimate C o and soil samples under the cover crops can be divided into four groups depending on C o. The principal component analysis of the MicroResp TM profiles showed that the CK treatment was significantly different from the cover crop treatments. The cover crop treatments with wheat, vetch and peas as well as mustard form a cluster which was significantly different from the other clusters. In addition, the vetch, field peas and mustard treatments showed higher Shannon diversity H and Evenness (E) and Simpson diversity H compared to the other cover crop treatments with the lowest Shannon H and E at CK. In conclusion, overall, the vetch and field peas as well as wheat winter cover crop may be better management practices for agricultural ecosystems in southern Australia.