• Authors:
    • Martiniello, P.
  • Source: Agricultural Sciences
  • Volume: 3
  • Issue: 1
  • Year: 2012
  • Summary: Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with irrigation are the agronomical techniques able to better exploit the weather resources in Mediterranean environments. The experiment aimed to study the effect of 18 years of combined effect of irrigation and continuous durum wheat and wheat-forage rotations on productivities of crops and organic matter of topsoil. The experiments were established through 1991-2008 under rainfed and irrigated treatments and emphasized on the effect of irrigation and continuous wheat and wheat-forage crop rotations on water use efficiency and sustainability of organic matter. The effect of irrigation increased 49.1% and 66.9% the dry matter of mixture and meadow, respectively. Continuous wheat rotation reduced seed yield, stability of production, crude protein characteristics of kernel and soil organic matter. The yearly gain in wheat after forage crops was 0.04 t (ha yr) 1 under rainfed and 0.07 t (ha yr) -1 under irrigation treatments. The crude protein and soil organic matter of wheat rotations, compared to those of continuous wheat under rainfed and irrigated was increase in term of point percentage by 0.8 and 0.5 in crude protein and 5.1 and 4.4 in organic matter, respectively. The rotations of mixture and meadow under both irrigated treatments increased the point of percentage of organic matter over continuous wheat (9.3.and 8.5 in mixture and 12.5 and 9.5 meadow under rainfed and irrigation, respectively). Irrigation reduce the impact of weather on crop growing reducing water use efficiency (mean over rotations) for dry matter production (15.5 in meadow and 17.5 in mixture [L water (kg dry matter) -1]) and wheat seed yield. The effect of agronomic advantages achieved by forage crops in topsoil expire its effect after three years of continuous wheat rotation.
  • Authors:
    • Martins, M. dos R.
    • Angers, D. A.
    • Cora, J. E.
  • Source: Soil Science Society of America Journal
  • Volume: 76
  • Issue: 2
  • Year: 2012
  • Summary: In no-till systems, plants play a substantial role in soil physical conditioning because physical management is otherwise confined to sowing operations. We performed a study to determine the effect of 28 different crop sequences on soil water-stable aggregation, soil organic C (SOC), and the neutral carbohydrate composition of the surface layer (0-5-cm depth) of an Oxisol under no-till. Summer crop sequences with corn ( Zea mays L.) on a continuous basis or in rotation with soybean [ Glycine max (L.) Merr.] showed a higher mean weight diameter (MWD) of water-stable aggregates than those with a rice ( Oryza sativa L.)-bean ( Phaseolus vulgaris L.)-cotton ( Gossypium hirsutum L.) rotation. Among winter crops, pearl millet [ Pennisetum americanum (L.) Leeke] or grain sorghum [ Sorghum bicolor (L.) Moench] were associated with a higher MWD than oilseed radish ( Raphanus sativus L. var. oleiformis Pers.). Plant tissues of Poaceae species (corn, pearl millet, and sorghum) were enriched in pentoses relative to other plant species. A principal component analysis showed a close positive relationship of the soil aggregate MWD with the soil xylose content, but not with other soil monosaccharide and SOC contents, and a positive relationship with the amount of pentose input to the soil, notably from aboveground plant materials. A possible explanation is that pentosans are used as an energy source by filamentous microorganisms, which play a well-known role in stabilizing soil aggregates. Our results suggest that plant-derived carbohydrates mediate crop species effects on soil structure under no-till conditions, and this effect appears to be independent of changes in total SOC.
  • Authors:
    • Mehta, V. M.
    • Rosenberg, N. J.
    • Mendoza, K.
  • Source: Agricultural and Forest Meteorology
  • Volume: 152
  • Issue: 1
  • Year: 2012
  • Summary: The Missouri River Basin (MRB) is the largest river basin in the U.S. and is one of the most important crop and livestock-producing regions in the world. In a previous study of associations between decadal climate variability (DCV) phenomena and hydro-meteorological (HM) variability in the MRB for the March-August period, and their impacts on stream flow in the MRB, it was found that positive and negative phases of the Pacific Decadal Oscillation (PDO), the tropical Atlantic sea-surface temperature gradient variability (TAG), and the west Pacific Warm Pool (WPWP) temperature variability were significantly associated with decadal variability in precipitation and surface air temperature in the MRB, with combinations of various phases of these DCV phenomena associated with dry, wet, or neutral HM conditions. It was also found that these DCV phenomena impact stream flow in the MRB substantially via their association with MRB hydro-meteorology. In the present study, the Erosion Productivity Impact Calculator model, also known as the Environmental Policy Integrated Climate (EPIC) model, calibrated and validated for the MRB, was used to simulate yields of dryland corn ( Zea mays L.) and spring and winter wheat ( Triticum aestivum L.), in response to HM anomalies associated with the three DCV phenomena. Realistic values of indices of the three DCV phenomena have major impacts on crop yields, as much as 40-50% of average yield in some locations in the MRB and also evident in MRB-aggregated crop yields; however, our results show that the impacts can be location-specific. Since each of the three DCV phenomena can persist in one phase or another for several years to a decade or longer, and since the simultaneous correlation among these phenomena is negligibly small, their combined and cumulative positive/negative effects on the MRB HM and agricultural production can be dramatic in this major American and global "bread basket". In addition, EPIC's success in simulating long-term crop yields in the MRB, taking technology trends into account, suggests that, if the evolution of major DCV phenomena can be forecast, it may be possible to forecast, as well, some multiyear to decadal measure of crop yields in the MRB with some skill.
  • Authors:
    • Weber, D.
    • Way, T. R.
    • Camargo, G. G.
    • Mirsky, S. B.
    • Ryan, M. R.
    • Curran, W. S.
    • Teasdale, J. R.
    • Maul, J.
    • Moyer, J.
    • Grantham, A. M.
    • Spargo, J. T.
  • Source: Renewable Agriculture and Food Systems
  • Volume: 27
  • Issue: 1
  • Year: 2012
  • Summary: Organic producers in the mid-Atlantic region of the USA are interested in reducing tillage, labor and time requirements for grain production. Cover crop-based, organic rotational no-till grain production is one approach to accomplish these goals. This approach is becoming more viable with advancements in a system for planting crops into cover crop residue flattened by a roller-crimper. However, inability to consistently control weeds, particularly perennial weeds, is a major constraint. Cover crop biomass can be increased by manipulating seeding rate, timing of planting and fertility to achieve levels (>8000 kg ha -1) necessary for suppressing summer annual weeds. However, while cover crops are multi-functional tools, when enhancing performance for a given function there are trade-off with other functions. While cover crop management is required for optimal system performance, integration into a crop rotation becomes a critical challenge to the overall success of the production system. Further, high levels of cover crop biomass can constrain crop establishment by reducing optimal seed placement, creating suitable habitat for seed- and seedling-feeding herbivores, and impeding placement of supplemental fertilizers. Multi-institutional and -disciplinary teams have been working in the mid-Atlantic region to address system constraints and management trade-off challenges. Here, we report on past and current research on cover crop-based organic rotational no-till grain production conducted in the mid-Atlantic region.
  • Authors:
    • Paoletti, M. G.
    • Marini, L.
    • Nascimbene, J.
  • Source: Environmental Management
  • Volume: 49
  • Issue: 5
  • Year: 2012
  • Summary: The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.
  • Authors:
    • Singh, U. P.
    • Punia, M.
    • Gupta, R.
    • Sidhu, B. S.
    • Chandna, P.
    • Ladha, J. K.
  • Source: Applied Geography
  • Volume: 32
  • Issue: 2
  • Year: 2012
  • Summary: Satisfying the food demands of an ever-increasing population, preserving the natural resource base, and improving livelihoods are major challenges for South Asia. A large area of land in the Middle and Lower Gangetic Plains of South Asia remains either uncultivated or underused following the rice harvest in the kharif (wet) season. The area includes "rice-fallow," estimated at 6.7 million ha, flood-prone riversides (" diara lands," 2.4 million ha), waterlogged areas (4.9 million ha), and salt-affected soils (2.3 million ha). Bringing these lands under production could substantially improve the food supply and enhance livelihoods in the region. This paper describes a methodological case study that targeted resource-conserving technologies in underused lands of the Ballia District of eastern Uttar Pradesh (India) using multispectral remote-sensing images. Classification of temporal satellite data IRS-P6 in combination with Spot VGT 2 permitted the identification of all major categories of underused land during the post-rainy rabi/winter season, with an average accuracy of 89%. Based on three-year averages of field demonstrations, farmers gained an additional income of $63 ha -1 by introducing raised beds in salt-affected soils; $140 and $800 ha -1 by introducing deepwater rice varieties (monsoon) and boro rice (winter) in waterlogged areas; and $581 ha -1 by introducing zero-till lentil (winter) in rain-fed fallow lowland. Timely wheat planting through zero-tillage implies an additional income of $147 ha -1 and could increase wheat production by 35,000-65,000 tons in the district. The methodologies and technologies suggested in the study are applicable to more than 15 million ha of underutilized lands of the Indo-Gangetic Plains of South Asia. If the technologies are precisely applied, they can result in more than 3000 million US $ of additional income every year to these poverty prone areas.
  • Authors:
    • Kremer, R. J.
    • Anderson, S. H.
    • Paudel, B. R.
    • Udawatta, R. P.
  • Source: Agroforestry Systems
  • Volume: 84
  • Issue: 2
  • Year: 2012
  • Summary: Soil enzyme activities and water stable aggregates have been identified as sensitive soil quality indicators, but few studies exist comparing those parameters within buffers, grazed pastures and row-crop systems. Our objective was to examine the effects of these land uses on the activities of selected enzymes (beta-glucosidase, beta-glucosaminidase, fluorescein diacetate (FDA) hydrolase, and dehydrogenase), proportion of water stable aggregates (WSA), soil organic carbon and total nitrogen content. Four management treatments [grazed pasture (GP), agroforestry buffer (AgB), grass buffer (GB) and row crop (RC)] were sampled in 2009 and 2010 at two depths (0 to 10- and 10 to 20-cm) and analyzed. Most of the soil quality indicators were significantly greater under perennial vegetation when compared to row crop treatments. Although there were numerical variations, soil quality response trends were consistent between years. The beta-glucosaminidase activity increased slightly from 156 to 177 g PNP g -1 dry soil while beta-glucosidase activity slightly decreased from 248 to 237 g PNP g -1 dry soil in GB treatment during 2 years. The surface (0-10 cm depth) had greater enzyme activities and WSA than sub-surface (10-20 cm) samples. WSA increased from 178 to 314 g kg -1 in row crop areas while all other treatments had similar values during the 2 year study. The treatment by depth interaction was significant ( P<0.05) for beta-glucosidase and beta-glucosaminidase enzymes in 2009 and for dehydrogenase and beta-glucosaminidase in 2010. Soil enzyme activities were significantly correlated with soil organic carbon content ( r≥0.94, P<0.0001). This is important because soil enzyme activities and microbial biomass can be enhanced by perennial vegetation and thus improve several other soil quality parameters. These results also support the hypothesis that positive interactions among management practices, soil biota and subsequent environmental quality effects are of great agricultural and ecological importance.
  • Authors:
    • Way, T. R.
    • Kleinman, P. J. A.
    • Moore, P. A.
    • Pote, D. H.
  • Source: Journal of Agricultural Science
  • Volume: 4
  • Issue: 4
  • Year: 2012
  • Summary: Poultry manure provides a rich organic nutrient source to fertilize crops and help neutralize soil acidity. However, the usual practice of broadcasting litter on the surface of pastures and other no-till systems can degrade water quality by allowing nutrients to be transported from fields in surface runoff, while much of the ammonium-N volatilizes and escapes into the atmosphere. In a previous study, we used a subsurface banding technique to move litter from the soil surface into the root zone with minimal disturbance of the grass, thatch, and soil structure; and found that nutrient losses decreased substantially. Because subsurface banding increased retention of nutrients and water in the soil, we conducted follow-up research to compare crop yield and quality from this litter application method to those from the conventional surface broadcasting method. The objectives were to determine effects of subsurface application on perennial forage yield, quality, and temporal yield distribution during the growing season. Field plots were located on silt loam soil (8-10% slopes) with well-established bermudagrass ( Cynodon dactylon L. Pers.). Poultry litter was applied (6.7 Mg ha -1, dry weight) by one of two methods: surface broadcast manually or subsurface banded using a tractor-drawn prototype implement. Each treatment was replicated three times. There were also three control plots that received no litter. Results showed that subsurface application generally increased forage quality and yield, especially in the latter part of the growing season when forage production from surface-applied litter began to decline. Under the growing conditions in this study, subsurface application increased mean forage yield by as much as 40%.
  • Authors:
    • Kornecki, T. S.
    • Place, G. T.
    • Reberg-Horton, S. C.
    • Grossman, J. M.
    • Meijer, A. D.
    • Price, A. J.
    • Webster, T. M.
  • Source: Renewable Agriculture and Food Systems
  • Volume: 27
  • Issue: 1
  • Year: 2012
  • Summary: Organic systems in the southeastern USA offer unique challenges and solutions to crop production due to regional soil and climate characterized by highly weathered soil types, high precipitation and the capacity to grow cover crops in the winter. Recently, the interest of producers and researchers in high-residue cover crops and conservation tillage systems has increased. Various designs of the roller-crimper to manage cover crops have been invented and demonstrated to growers in the southeastern region of the USA over the past 17 years. The impacts of high-residue cover crop mulches on the agronomic systems in the region are diverse. Legume cover crops assist with meeting N demand from cash crops though they decompose rapidly and are seldom sufficient for N demanding crops such as corn. Cereal cover crop mulches can have the opposite effect by immobilizing N and have a longer impact on soil moisture and weed dynamics. While undesirable for many crops, N immobilization is one possible mechanism for weed suppression in legume cash crops planted into cereal residues. Other cover crop weed suppression mechanisms include physical impedance, light availability, allelopathy and microclimate effects. Regardless of the cause, successful weed control by mulches is highly dependent on having substantial biomass. The southeastern region is capable of producing cover crop biomass in excess of 9000 kg ha(-1), which is sufficient for weed control in many cash crops, although supplementary weed control is sometimes necessary. Long-term data are needed to predict when farmers should add supplementary weed control. More work is also needed on how much additional N is required for the cash crops and how best to deliver that N in a high-residue environment using organic sources.
  • Authors:
    • Nyakatawa, E. Z.
    • Reddy, S. S.
    • Reddy, C. K.
  • Source: International Journal of Agriculture & Biology
  • Volume: 14
  • Issue: 1
  • Year: 2012
  • Summary: Nitrogen uptake pattern by cotton (Gossypium hirsutum L.) at different growth stages in response to long-term application of poultry litter (PL) in a no-till system (NT) was studied on a silt loam soil in 2009. The study was done in plots that were established in 1996 at TVREC, Belle Mina, AL, USA. Treatments included were three tillage [conventional tillage (CT), mulch-tillage (MT), and no-tillage (NT)] two cropping systems tot ton-lye (C-R; cotton in summer & cereal rye cover crop in winter), and cotton-fallow (C-F; cotton in summer & fallow in winter)] and two sources of nitrogen [PL at 100 and 200 kg N ha(-1) and ammonium nitrate (AN) at 100 kg N ha(-1)] Out of all treatment combinations only 11 important treatments were selected and arranged in a randomized complete block design and replicated 4 times. Results in 2009, showed that NT system can supply equal quantity of nitrogen compared to CT at all growth stages. No-tillage recorded similar growth, yield and total nitrogen uptake compared to CT. Application of PL at 100 kg N ha(-1) showed significantly superior plant growth compared to AN at early growth stage, but the differences disappeared as the plant growth progressed. Similar yields and nitrogen uptake were observed with application of either PL or AN at 100 kg N ha(-1). Application of a double rate of PL (200 kg N ha(-1)) resulted in significantly higher nitrogen uptake compared to that of PL or AN at 100 kg N ha(-1), but a significant yield advantage was not observed with this higher rate. Of the total nitrogen extracted by cotton at maturity, 50% uptake was completed by early flowering stage and 97% was completed by boll development stage. At maturity, the majority of nitrogen (52%) was partitioned into seeds, while the rest was distributed into leaves (16%), stems (18%) and reproductive parts (14%). winter rye cover crop did not influence nitrogen uptake. (C) 2012 Friends Science Publishers