• Authors:
    • Curtin, D.
    • Beare, M.
    • Gillespie, A.
    • Gregorich, E.
    • Sanei, H.
    • Yanni, S.
  • Source: Soil Biology and Biochemistry
  • Volume: 91
  • Issue: December 2015
  • Year: 2015
  • Summary: The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 m; silt: 50-5 m, and clay: <5 m). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.
  • Authors:
    • Caesar-Tonthat, T.
    • Stevens, W. B.
    • Sainju, U. M.
    • Montagne, C.
  • Source: AGRONOMY JOURNAL
  • Volume: 106
  • Issue: 5
  • Year: 2014
  • Summary: Management practices are needed to reduce N losses from croplands converted from Conservation Reserve Program (CRP). We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on surface residue N, soil total nitrogen (STN), NH 4-N, and NO 3-N at the 0- to 85-cm depth in a sandy loam from 2005 to 2011 in croplands converted from CRP in western North Dakota. Treatments were two irrigation practices (irrigated vs. non-irrigated) and six cropping systems (CRP, conventional till malt barley [ Hordeum vulgaris L.] with nitrogen fertilizer [CTBN], conventional till malt barley without nitrogen fertilizer [CTBO], no-till malt barley-pea ( Pisum sativum L.) with nitrogen fertilizer [NTB-P], no-till malt barley with nitrogen fertilizer [NTBN], and no-till malt barley without nitrogen fertilizer [NTBO]). Surface residue N was greater in non-irrigated CRP than irrigated and non-irrigated CTBN, CTBO, and NTBO and non-irrigated NTB-P. Soil total N at 0 to 10 cm was greater in irrigated CRP, but at 0 to 85 cm was greater in non-irrigated NTBN than irrigated CRP, CTBN, CTBO, and NTBO and non-irrigated NTB-P. Soil NH 4-N content at 0 to 20 cm was also greater in irrigated CRP than irrigated and non-irrigated CTBO, NTB-P, and NTBO. Soil NO 3-N at 0 to 85 cm was greater in NTB-P than CRP, CTBO, and NTBO. Because of increased soil N sequestration and NO 3-N level, irrigated NTB-P may be used to reduce soil N losses and optimize N availability compared to other treatments in croplands converted from CRP.
  • Authors:
    • Soimakallio, S.
    • Holma, A.
    • Helin, T.
  • Source: International Journal of Life Cycle Assessment
  • Volume: 19
  • Issue: 4
  • Year: 2014
  • Summary: A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed. The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWP(bio)-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass. Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m(2)a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support. Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.
  • Authors:
    • Hermansen, J. E.
    • Chirinda, N.
    • Olesen, J. E.
    • Meyer-Aurich, A.
    • Knudsen, M. T.
  • Source: Journal of Cleaner Production
  • Volume: 64
  • Issue: February
  • Year: 2014
  • Summary: Many current organic arable agriculture systems are challenged by a dependency on imported livestock manure from conventional agriculture. At the same time organic agriculture aims at being climate friendly. A life cycle assessment is used in this paper to compare the carbon footprints of different organic arable crop rotations with different sources of N supply. Data from long-term field experiments at three different locations in Denmark were used to analyse three different organic cropping systems ('Slurry', 'Biogas' and 'Mulching'), one conventional cropping system ('Conventional') and a "No input" system as reference systems. The 'Slurry' and 'Conventional' rotations received slurry and mineral fertilizer, respectively, whereas the 'No input' was unfertilized. The 'Mulching' and 'Biogas' rotations had one year of grass-clover instead of a faba bean crop. The grass-clover biomass was incorporated in the soil in the 'Mulching' rotation and removed and used for biogas production in the 'Biogas' rotation (and residues from biogas production were simulated to be returned to the field). A method was suggested for allocating effects of fertility building crops in life cycle assessments. The results showed significantly lower carbon footprint of the crops from the 'Biogas' rotation (assuming that biogas replaces fossil gas) whereas the remaining crop rotations had comparable carbon footprints per kg cash crop. The study showed considerable contributions caused by the green manure crop (grass-clover) and highlights the importance of analysing the whole crop rotation and including soil carbon changes when estimating carbon footprints of organic crops especially where green manure crops are included. (C) 2013 Elsevier Ltd. All rights reserved.
  • Authors:
    • Peth, S.
    • Mordhorst, A.
    • Horn, R.
  • Source: Geoderma
  • Volume: 219
  • Issue: May
  • Year: 2014
  • Summary: Mechanical disturbance of soil structure is commonly related to altered physical changes in pore systems, which control CO2 effluxes e.g. by changes in gas transport properties and in microbial activity. Soil compaction mostly leads to reduced CO2 fluxes. In contrast, structured soils can also release physically entrapped CO2 or give access to protected carbon sources inside aggregates due to aggregate breakdown by disruptive forces. In this study it was investigated how far arable soil management affects structure- and compaction-related CO2-releases using incubation experiments and CO2 gas analysis under standard matric potentials (-6 kPa). CO2 efflux was analyzed before, during and after mechanical loading using the alkali trap method (static efflux) and a gas flow compaction device (GaFloCoD, dynamic efflux). Intact soil cores (236 and 471 cm(3)) were collected from a Stagnic Luvisol with loamy sand (conservation and conventional tillage systems) and a Haplic Luvisol with clayey silt (under different fodder crops) from the topsoil (10-15 cm) and subsoil (35-45 cm). Mechanical stability was reflected by the pre-compression stress value (P-c) and by the tensile strength of aggregates (12-20 mm). Changes in pore systems were described by air conductivity as well as air capacity and total porosity. While CO2-releases varied highly during the compaction process (GaFloCoD) for different stress magnitudes, soil depths and management systems, basal respiration rates were generally reduced after mechanical loading by almost half of the initial rates irrespective of soil management. For both methods (dynamic and static efflux) restriction in gas transport functionality was proved to have major influence on inhibition of CO2 efflux due to mechanical loading. GaFloCoD experiments demonstrated that decreases in CO2 efflux were linked to structural degradation of pore systems by exceeding internal soil strength (P-c). Otherwise, re-equilibrating matric potentials to 6 kPa and re-incubating offset inhibition of soil respiration suggest a re-enhancement of microbial activity. At this state, physical influences were apparently overlapped by biological effects due to higher energy supply to microbes, which could be offered by spatial distribution changes of microorganisms and organic substrates within a given soil structure. This implies the susceptibility of physical protection mechanism for carbon by disruption of soil structure. In future, special focus should be given on a clear distinction between physical and microbiological effects controlling CO2 fluxes in structured soils. (C) 2014 Elsevier B.V. All rights reserved.
  • Authors:
    • Barsotti, J. L.
    • Sainju, U. M.
    • Wang, J.
  • Source: Soil Science Society of America Journal
  • Volume: 78
  • Issue: 1
  • Year: 2014
  • Summary: Little information is available about management practice effects on the net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional-tillage malt barley [Hordeum vulgaris L.]-fallow [CTB-F], no-till malt barley-pea [Pisum sativum L.] [NTB-P], and no-till continuous malt barley [NTCB]) and N fertilization rates (0 and 80 kg N ha(-1)) on net GWP and GHGI from 2008 to 2011 in eastern Montana. Carbon dioxide sources from farm operations were greater under CTB-F than NTB-P and NTCB and greater with N fertilization than without, but the sources from soil greenhouse gases (GHGs) varied among treatments and years. Carbon dioxide sinks from crop residue and soil organic C (SOC) sequestration were greater under NTB-P or NTCB with 80 kg N ha(-1) than other treatments. Net GWP and GHGI based on soil respiration (GWP(R) and GHGI(R), respectively) and SOC (GWP(C) and GHGI(C), respectively) were greater under CTB-F with 0 kg N ha(-1) than other treatments, suggesting that alternate-year fallow and the absence of N fertilization to crops can increase net GHG emissions. Because of greater grain yield but lower GWP and GHGI, NTB-P with N rates between 0 and 80 kg N ha(-1) may be used as management options to mitigate global warming potential while sustaining dryland malt barley and pea yields compared with CTB-F with 0 kg N ha(-1) in the northern Great Plains. The results can be applied to other semiarid regions with similar soil and climatic conditions.
  • Authors:
    • Dalgaard, R.
    • Petersen, B. M.
    • Oudshoorn, F. W.
    • Halberg, N.
    • Sorensen, C. G.
  • Source: Biosystems Engineering
  • Volume: 120
  • Issue: April
  • Year: 2014
  • Summary: Different tillage systems result in different resource uses and environmental impacts. Reduced tillage generates savings in direct energy input and the amount of machinery items needed. As the basics for holistic Life Cycle Assessments, both the influencing direct and indirect energy as sources of greenhouse gas emissions are required. Life Cycle inventories (LCI) were aggregated for a number of optimised machinery systems and tillage scenarios integrating a four crop rotation consisting of spring barley, winter barley, winter wheat and winter rape seed. By applying Life Cycle Assessments to a number of tillage scenarios and whole field operations sequences, the energy efficiency and environmental impact in terms of greenhouse gas emissions (GHG) were evaluated. Results showed that the total energy input was reduced by 26% for the reduced tillage system and by 41% for the no-tillage system. Energy used for traction and machine construction contributed between 6 and 8% of the total GHG emission per kg product. The total emission of GHG was 915 g CO2 equivalents per kg product by using the conventional tillage system, 817 g CO2 equivalents for the reduced tillage system and 855 g CO2 equivalents for the no tillage system. The no tillage system was expected to yield 10% less. The mineralisation in the soil contributed the most (50-60%) to this emission, while the fertiliser production contributed with 28-33%. The results stress the importance of applying a systems approach to capture the implications of, for example, sustained yields as otherwise the environmental benefits can be compromised. (C) 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.
  • Authors:
    • Wynn, S. C.
    • Kindred, D. R.
    • Sylvester-Bradley, R.
    • Thorman, R. E.
    • Smith, K. E.
  • Source: The Journal of Agricultural Science
  • Volume: 152
  • Issue: 1
  • Year: 2014
  • Summary: Fertilizer nitrogen (N) accounts for the majority of the greenhouse gas (GHG) emissions associated with intensive wheat production, and the form of fertilizer N affects these emissions. Differences in manufacturing emissions (as represented in the current carbon accounting methodologies) tend to favour urea, even when using the best available manufacturing technologies (BAT), whereas differences in fertilizer N efficiency and emissions of ammonia tend to favour ammonium nitrate (AN). To resolve these differences, data from 47 experiments in two large UK studies conducted from 1982 to 1987 and from 2003 to 2005 were reanalysed, showing that on average urea efficiency was 0 center dot 9 of AN (although mean ammonia emissions in 10 subsidiary experiments indicated an efficiency difference of 0 center dot 2); treating urea with a urease inhibitor (TU; AGROTAIN((R)), active ingredient N-(n-butyl) thiophosphoric triamide (n-BTPT)) brought its efficiency almost in line with AN; however, a significantly greater mean optimum N amount for TU (+0 center dot 1 of AN) was not fully explained. A standard response function relating wheat yield to applied AN was modified for degrees of relative inefficiency, thus enabling yields and GHG intensities (kg CO(2)e/tonne (t) grain) to be calculated using a PAS2050 compatible model for GHG emissions for any N amount of any N form. With AN manufactured by average European technology (AET), the estimated GHG intensity of wheat producing 8 t/ha was 451 kg/t; whereas with urea or TU made by AET it was 0.87-0.99 or 0.84-0.86 of this respectively. Using BAT for fertilizer manufacture, the grain's GHG intensity with AN and TU was 368kg/t, but was 1 center dot 03-1 center dot 17 of this with untreated urea. The range of effects on GHG intensities arose mainly from remaining uncertainties in the inefficiencies of the N forms. Generally, economic margins and GHG intensities were not much affected by adjustments in N use for relative inefficiencies or different prices of urea-based fertilizers compared with AN. Overall, TU appeared to provide the best combination of economic performance and GHG intensity, unless the price for N as TU exceeded that for N as AN.
  • Authors:
    • Nevison, I. M.
    • McKenzie, B. M.
    • Hallett, P. D.
    • Gordon, H.
    • Watson, C. A.
    • Rees, R. M.
    • Walker, R. L.
    • Wheatley, R.
    • Topp, C. F. E.
    • Griffiths, B. S.
    • Ball, B. C.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 189
  • Issue: May
  • Year: 2014
  • Summary: Soil management practices shown to increase carbon sequestration include reduced tillage, amendments of carbon and mixed rotations. As a means to mitigate greenhouse gases, however, the success of these practices will be strongly influenced by nitrous oxide (N2O) emissions that vary with soil wetness. Few seasonal data are available on N2O under different soil managements so we measured seasonal N2O emission in three field experiments between 2006 and 2009 in eastern Scotland. The experimental treatments at the three sites were (1) tillage: no-tillage, minimum tillage, ploughing to 20 cm with or without compaction and deep ploughing to 40 cm, (2) organic residue amendment: application of municipal green-waste compost or cattle slurry and (3) rotations: stocked and stockless (without manure) organic arable farming rotations. Most seasons were wetter than average with 2009 the wettest, receiving 20-40% more rainfall than average. Nitrous oxide emissions were measured using static closed chambers. There was no statistical evidence, albeit with low statistical power, that reduced tillage affected N2O emissions compared to normal depth ploughing. With organic residue amendments, only in the wet season in 2008 were emissions significantly increased by high rates of green-waste compost (4.5 kg N2O-N ha(-1)) and cattle slurry (5.2 kg N2O-N ha(-1)) compared to the control (1.9 kg N2O-N ha(-1)). In the organic rotations, N2O emissions were greatest after incorporation of the grass/clover treatments, especially during conversion of a stocked rotation to stockless. Emissions from the organic arable crops (1.9 kg N2O-N ha(-1) in 2006, 3.0 kg N2O-N ha(-1) in 2007) generally exceeded those from the organic grass/clover (0.8 kg N2O-N ha(-1) in 2006, 1.1 kg N2O-N ha(-1) in 2007) except in 2008 when the Wet weather delayed manure applications and increased emissions from the grass/clover (2.8 kg N2O-N ha(-1)). Nevertheless, organic grassland was the land use providing the most effective overall mitigation. Although the magnitude of fluxes did not relate particularly well to rainfall differences between seasons, greater rainfall received during some growing seasons increased the differences between tillage, organic residue and crop rotation phase treatments, negating any possible mitigation by timing management operations in dry periods. This was partly attributed to applying tillage and manures late and/or in wet conditions. Of benefit would be different sampling strategies including closed chambers or eddy covariance with standardised methodology. Controlled soil management experiments with a wide geographic spread to specify land management for mitigation also important. (C) 2014 Elsevier B.V. All rights reserved.
  • Authors:
    • Luis Arrue, J.
    • Alvaro-Fuentes, J.
    • Plaza-Bonilla, D.
    • Cantero-Martinez, C.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 189
  • Issue: May
  • Year: 2014
  • Summary: There is a strong need to identify the combination of tillage and N fertilization practices that reduce the amount of nitrous oxide (N2O) emissions while maintaining crop productivity in dryland Mediterranean areas. We measured the fluxes of N2O in two field experiments with 3 and 15 years since their establishment. In the long-term experiment, two types of tillage (NT, no-tillage, and CT, conventional intensive tillage) and three mineral N fertilization rates (0, 60 and 120 kg N ha(-1)) were compared. In the short-term experiment, the same tillage systems (CT and NT) and three N fertilization doses (0,75 and 150 kg N ha(-1)) and two types of fertilizers (mineral N and organic N with pig slurry) were compared. N2O emissions, water-filled pore space, soil mineral N content, grain yields, N-biomass inputs and soil total nitrogen (STN) stocks were quantified and the N2O yield-scaled ratio as kg of CO2 equivalents per kg of grain produced was calculated. In both experiments tillage treatments significantly affected the dynamics of N2O fluxes. Cumulative losses of N as N2O were similar between tillage treatments in the long-term field experiment. Contrarily, although not significant, cumulative N losses were about 35% greater under NT than CT in the short-term experiment. NT significantly increased the production of grain and the inputs of N to the soil as above-ground biomass in both experiments. Averaged across fertilizer treatments, CT emitted 0.362 and 0.104 kg CO2 equiv. kg grain(-1) in the long-term and the short-term experiment, respectively, significantly more than NT that emitted 0.033 and 0.056 kg CO2 equiv. kg grain(-1), respectively. Nitrogen fertilization rates did not affect the average N2O fluxes or the total N losses during the period of gas measurement in the long-term experiment. Contrarily, in the short-term experiment, N2O emissions increased with application rate for both mineral and organic fertilizers. The use of pig slurry increased grain production when compared with the mineral N treatment, thus reducing the yield-scaled emissions of N2O by 44%. Our results showed that in rainfed Mediterranean agroecosystems, the use of NT and pig slurry are effective means of yield-scaled N2O emissions reduction. (C) 2014 Elsevier B.V. All rights reserved.