• Authors:
    • Abid, H.
    • Shakeel, A.
    • Nadeem, T.
    • Chattha,T. H.
    • Hakoomat, A.
  • Source: Food, Agriculture and Environment
  • Volume: 10
  • Issue: 2
  • Year: 2012
  • Summary: A field study was conducted during 2006-2007 and 2007-2008 at Central Cotton Research Institute, Multan, Pakistan, on silt loam soils to evaluate the effect of irrigation at different growth stages and phosphorus application methods on agronomic traits of wheat. The field experiments were laid out in a split plot design with three replications. The irrigation treatments, i.e. control - no irrigation (I 1), two irrigations at crown root and booting stage (I 2), three irrigations at crown root, booting and grain development (I 3), four irrigations at crown root, booting, anthesis and grain development (I 4) and five irrigations at crown root, booting, earing, anthesis and grain development (I 5) were kept in main plots. The subplots were allocated to three phosphorus application methods viz. side dressed, 3 inches aside seed (I 1), broadcasting at the time of seedbed preparation (P 2), and top dressing after first irrigation (P 3). Data on yield components such as tiller number m -2, spikelet number spike -1, number of grains spike -1and 1000-grain weight as well as grain and total dry matter (TDM) yields were collected. Full irrigation (I 4, I 5) treatments significantly affected yield and yield components. A reduction in all studied characters of wheat crop was subjected to water stress at low or greater degree (e.g. I 1, I 2, and I 3). Phosphorus application as side dressed (P 1), 3 inches aside seed, was more beneficial for increasing yield and yield components of wheat compared to other methods of P application.
  • Authors:
    • Yasir, I.
    • Ghazanfar, M. U.
    • Zafar, I.
    • Khan, M. A.
    • Hamid, M. I.
    • Naeem, A.
  • Source: Pakistan Journal of Phytopathology
  • Volume: 24
  • Issue: 1
  • Year: 2012
  • Summary: Bacterial blight (BL), caused by Xanthomonas campestris pv. malvacearum (Smith) Dye, is a common disease affecting the growth, development and yield of cotton ( Gossypium hirsutum L.) in Pakistan. Field trial was conducted for a season to determine the influence of environmental conditions representing heavy and low rainfall periods, wind speed and direction on disease incidence by growing 101 commercial varieties. However, out of 101 varieties, a total of 68 varieties were moderately susceptible response while 8 were susceptible to bacterial blight disease. A total of 25 varieties were moderately resistant to bacterial blight disease. No variety was resistant to bacterial blight disease. Except radiation and wind speed, overall correlation of maximum and minimum air temperature, relative humidity, rainfall and pan evaporation with bacterial blight disease severity was statistically significant. The poor correlation of wind speed with disease severity may also be due to frequency and amount of air currents received in a certain adjoining areas of Faisalabad district of Pakistan and its indirect role to create humid conditions. Similarly relative humidity is different at different levels of crop canopy and largely depends upon the amount of moisture resulted due to rain showers and irrigation.
  • Authors:
    • Hosseini, S. M. B.
    • Jahansooz, M. R.
    • Heidari, H.
    • Chaichi, M. R.
  • Source: Annals of Biological Research
  • Volume: 3
  • Issue: 6
  • Year: 2012
  • Summary: The aim of the study was to determine the effect of alternate irrigation method and deficit irrigation on radiation use efficiency and forage quality of foxtail millet ( Setaria italica) under a double cropping system after barley ( Hordeum vulgar). Conventional furrow irrigation (M1) and alternate furrow irrigation (M2) methods and different deficit irrigation levels including 100, 85, 70 and 55% of crop water requirement (V1, V2, V3 and V4) were tested in a field experiment on the west of Tehran, Iran for 2 years (2008 and 2009). Results showed that alternate furrow irrigation with 85% of crop water requirement (M2V2) had the highest Absorption Ratio of Photosynthetically Active Radiation (PARAR) and Cumulative Absorption of Photosynthetically Active Radiation (PARCA) in 2008 (P
  • Authors:
    • Ma, Y. G.
    • Chen, X.
    • Li, Y. P.
    • Huang, Y.
  • Source: Agricultural Water Management
  • Volume: 107
  • Year: 2012
  • Summary: An integrated optimization method is developed for supporting agriculture water management and planning in Tarim River Basin, Northwest China. The developed method couples two-stage stochastic programming (TSP) with inexact quadratic program (IQP). The hydrological model is provided for forecasting the available irrigation water. The simulation system is then embedded into an optimization framework, where the objective is to maximize the system benefit for water resources management. The developed method can not only deal with nonlinearities in the cost/benefit objective and uncertainties expressed as probabilities and intervals, but also support the analysis of policy scenarios that are associated with economic penalties when the promised water-allocation targets are violated. A case study is conducted for Kaidu-kongque watershed in Tarim River Basin. The results obtained can help generate desired policies for water resources management with maximized economic benefit and minimized system-failure risk. (C) 2012 Elsevier B.V. All rights reserved.
  • Authors:
    • Finlay, L. A.
    • Weaver, T. B.
    • Hulugalle, N. R.
    • Lonergan, P.
  • Source: Soil Research
  • Volume: 50
  • Issue: 4
  • Year: 2012
  • Summary: Comparative studies of soil quality and energy use in two- and three-crop rotations in irrigated cotton ( Gossypium hirsutum L.) based cropping systems under varying stubble management practices in Australian Vertosols are sparse. Our primary objective was to quantify selected soil quality indices (salinity, sodicity, exchangeable cations, nitrate-N, pH), crop yields, and greenhouse gas emissions in four irrigated cotton-based cropping systems sown on permanent beds in a Vertosol with subsoil sodicity near Narrabri in north-western New South Wales. A secondary objective was to evaluate the efficacy of sowing vetch in rotation with cotton over a long period on the incidence of black root-rot in cotton seedlings. Results: presented in this report pertain to the period June 2005-May 2011. The experimental treatments were: cotton-cotton; cotton-vetch ( Vicia benghalensis L.); cotton-wheat ( Triticum aestivum L.), where wheat stubble was incorporated; and cotton-wheat-vetch, where wheat stubble was retained as in-situ mulch. Vetch was terminated during or just before flowering by a combination of mowing and contact herbicides, and the residues were retained as in-situ mulch. Soil pH, electrical conductivity (EC 1:5), Cl -, NO 3--N, exchangeable cations, exchangeable sodium percentage (ESP), electrochemical stability index (=EC 1:5/ESP), and EC 1:5/ESC (exchangeable sodium concentration) were evaluated in samples taken from the 0-1.2 m depth before sowing cotton during late September or early October of each year. Incidence of black root-rot was assessed 6 weeks after sowing cotton. Compared with sowing cotton every year, including wheat in cotton-based cropping systems improved cotton yield and reduced soil quality decline, emissions of carbon dioxide equivalents (CO 2-e) per unit area, and CO 2-e emissions per unit of cotton yield. Including vetch in the rotation was of negligible benefit in terms of yield and CO2-e emissions per unit of yield. The rate of soil quality decline was unaffected by including vetch in a cotton-wheat rotation but was accelerated when included in a cotton-cotton sequence. Among all cropping systems, soil quality was best with cotton-wheat and cotton-wheat-vetch but poorest with cotton-vetch. Although CO2-e emissions associated with growing 1ha of cotton could be reduced by 9% by growing vetch because of substituting fixed atmospheric N for N fertiliser derived from fossil fuels, this advantage was partly negated by the emissions from farming operations associated with growing a vetch crop. Relative to a two-crop rotation (one cotton-one rotation crop), negligible benefits in terms of yield, soil quality, greenhouse gas emissions, and black root-rot control accrued from a three-crop rotation (one cotton-two rotation crops). Incidence of black root-rot increased as the number of cotton crops sown increased. In addition to the cropping systems, soil quality indices and yield were significantly influenced by irrigation water quality and climate.
  • Authors:
    • Abraham, S.
    • Babar, S.
    • Singh, J.
    • Majumdar, G.
    • Venugopalan, M. V.
  • Source: Better Crops with Plant Food
  • Volume: 96
  • Issue: 2
  • Year: 2012
  • Summary: Despite large tracts of irrigated cotton, rainfed systems remain the most important option for improving cotton production in India. Within rainfed fields, the potential effects of adopting high plant population with adequate NPK fertilizer management offer a good opportunity to increase crop productivity.
  • Authors:
    • Naidu, M. V. S.
    • Kailaimannan, R.
    • Venkaiah, K.
  • Source: Madras Agricultural Journal
  • Volume: 99
  • Issue: 4/6
  • Year: 2012
  • Summary: Some important physico-chemical parameters of irrigation water of guava orchards in Prakasam district were evaluated for the criteria of the irrigation water quality. Thirty water samples were collected from three different mandals of the Prakasam district. The present study revealed that pH was neutral to moderately alkaline, Electrical Conductivity (EC) was high, Sodium Adsorption Ratio (SAR) was low to medium and Residual Sodium Carbonate (RSC) was good to marginal. So, initiative must be taken to reduce salt accumulation in the soil through drainage and adopting the highly salt tolerant crops like cotton, mustard and tamarind for the better utilization of the land.
  • Authors:
    • Diker, K.
    • Sezen, S.
    • Tekin, S.
    • Unlu, M.
    • Onder, S.
    • Kanber, R.
  • Source: Turkish Journal of Agriculture and Forestry
  • Volume: 36
  • Issue: 1
  • Year: 2012
  • Summary: In this study, the water saving and conservation potential of various furrow irrigation management techniques for irrigated cotton were compared. Conventional every-furrow irrigation with open-end furrows (EFO) and blocked-end furrows (EFB), and alternate every-other-furrow management with open-end furrows (AFO) and blocked-end furrows (AFB), were considered. Considerable seasonal water savings were obtained with AFO and AFB flows, on average from 717 mm to 906 mm, respectively, when compared to EFO. Alternate furrows showed the ability to reduce tailwater runoff considerably. When compared with EFO, water use was reduced by 9063 m(3) ha(-1) (60%) using AFB and 7167 m(3) ha(-1) (48%) using AFO, with decreases in yield of 765 kg ha(-1) (27%) and 492 kg ha(-1) (17%), respectively. Similarly, average water use efficiencies were 0.36 kg m(-3) for AFB and 0.31 kg m(-3) for AFO, compared to 0.20 kg m(-3) for EFO. Results showed the possibility of applying alternate-flow furrow management techniques for water conservation in cotton irrigation. Additionally, the alternate furrow method could also be considered as a deficit irrigation approach in the Harran Plain.
  • Authors:
    • Liu, S.
    • Jiang, S.
    • Hu, W.
    • Wan, S.
    • Wang, R.
    • Kang, Y.
  • Source: Agricultural Water Management
  • Volume: 109
  • Year: 2012
  • Summary: Due to the mismanagement of water and fertilizer application, cotton cultivation in Xinjiang Northwest China is faced with the problems of soil deterioration and groundwater table ascension. This study was conducted to evaluate the effects of different levels of water applied through drip irrigation on cotton yield and water use in an arid region of Northwest China. The experiment included five water treatments in which the soil matric potential (SMP) at a depth of 20 cm was controlled higher than -10 kPa (S1), -20 kPa (S2), -30 kPa (S3), -40 kPa (S4), and -50 kPa (S5) after cotton was established. The results revealed that the highest cotton evapotranspiration (ETc) was achieved under S1 (-10 kPa) treatment and the ETc, deep percolation and the ratio of deep percolation with irrigation water all increased with increasing SMP threshold. After three years experiment, no salt accumulation in surface soil layer was found under our irrigation schedule. The highest seed cotton yield was obtained when the SMP threshold was controlled above -30 kPa in 2008, and -20 kPa in 2009 and 2010. Moreover, the highest yield obtained after 3 years was 42% higher than the average yield achieved by local farmers in the area. Additionally, the water use value (WUE and IWUE) tended to increase as the SMP threshold decreased in 2009 and 2010. Considering the cotton yield and the impact of irrigation on the underground water table, an SMP higher than -20 kPa at 20 cm can be used as an indicator for cotton drip irrigation scheduling and agronomic practices in this area to help alleviate the dangerous increase in the water table while increasing the cotton seed yield. (C) 2012 Elsevier B.V. All rights reserved.
  • Authors:
    • Al-Ain, F.
    • Al-Chammaa, M.
    • Khalifa, K.
  • Source: Communications in Soil Science and Plant Analysis
  • Volume: 43
  • Issue: 16
  • Year: 2012
  • Summary: A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha(-1)] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha(-1)) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the N-15 isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha(-1)) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.