• Authors:
    • Barsotti, J. L.
    • Lenssen, A. W.
    • Caesar-TonThat, T.
    • Sainju, U. M.
  • Source: Soil Science Society of America Journal
  • Volume: 76
  • Issue: 5
  • Year: 2012
  • Summary: Information is needed to mitigate dryland soil greenhouse gas (GHG) emissions by using novel management practices. We evaluated the effects of cropping sequence and N fertilization on dryland soil temperature and water content at the 0- to 15-cm depth and surface CO2, N2O, and CH4 fluxes in a Williams loam (fine-loamy, mixed, superactive, frigid, Typic Argiustolls) in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), and conventional-tilled malt barley-fallow (CTB-F) (control), each with 0 and 80 kg N ha(-1). Gas fluxes were measured at 3 to 14 d intervals using static, vented chambers from March to November 2008 to 2011. Soil temperature varied but water content was greater in CTB-F than in other treatments. The GHG fluxes varied with date of sampling, peaking immediately after substantial precipitation (>15 mm) and N fertilization during increased soil temperature. Total CO2 flux from March to November was greater in NTCB and NTB-P with 80 kg N ha(-1) than in other treatments from 2008 to 2010. Total N2O flux was greater in NTCB with 0 kg N ha(-1) and in NTB-P with 80 kg N ha(-1) than in other treatments in 2008 and 2011. Total CH4 uptake was greater with 80 than with 0 kg N ha(-1) in NTCB in 2009 and 2011. Because of intermediate level of CO2 equivalent of GHG emissions and known favorable effect on malt barley yield, NTB-P with 0 kg N ha(-1) might mitigate GHG emissions and sustain crop yields compared to other treatments in eastern Montana. For accounting global warming potential of management practices, however, additional information on soil C dynamics and CO2 associated with production inputs and machinery use are needed.
  • Authors:
    • Liebig, M. A.
    • Caesar-TonThat, T.
    • Stevens, W. B.
    • Sainju, U. M.
  • Source: Journal of Environmental Quality
  • Volume: 41
  • Issue: 6
  • Year: 2012
  • Summary: Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO2, N2O, and CH4 emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and nonirrigated) and five cropping systems (conventional-tilled malt barley [Hordeum vulgaris L.] with N fertilizer [CT-N], conventional-tilled malt barley with no N fertilizer [CT-C], no-tilled malt barley pea [Pisum sativum L.] with N fertilizer [NT-PN], no-tilled malt barley with N fertilizer [NT-N], and no-tilled malt barley with no N fertilizer [NT-C]). The GHG fluxes varied with date of sampling and peaked immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO2 and N2O fluxes were greater in CT-N under the irrigated condition, but CH4 uptake was greater in NT-PN under the nonirrigated condition than in other treatments. Although tillage and N fertilization increased CO2 and N2O fluxes by 8 to 30%, N fertilization and monocropping reduced CH, uptake by 39 to 40%. The NT-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO2 and N2O emissions and increasing CH4 uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO2 emissions along with N2O and CH4 fluxes is needed.
  • Authors:
    • Phillips, R. L.
    • Tanaka, D. L.
    • Hendrickson, J. R.
    • Liebig, M. A.
    • Schmer, M. R.
  • Source: Biomass and Bioenergy
  • Volume: 45
  • Issue: October
  • Year: 2012
  • Summary: Switchgrass (Panicum virgatum L.) is being evaluated as a bioenergy crop for the northern Great Plains. Field measurements of CO2, CH4, and N2O flux are needed to estimate the net greenhouse gas (GHG) balance of this biofeedstock. The study objective was to determine effects of recommended Nitrogen (N) fertilization (67 kg ha(-1) of N applied) and unfertilized switchgrass on growing season soil-atmosphere CO2, CH4, and N2O flux using static chamber methodology. Mean hourly CO2 flux was greatest during periods of active switchgrass growth and was similar between N fertilizer treatments (P = 0.09). Mean hourly N2O flux was consistently greater under N fertilization than without N throughout the growing season. Overall, N fertilization of switchgrass affected cumulative growing-season N2O flux (27.6 kg ha(-1) +/- 4.0 kg ha(-1) vs. 86.3 kg ha(-1) +/- 14.3 kg ha(-1) as CO2 equivalents (CO(2)eq) for 0 kg ha(-1) and 67 kg ha(-1) of N applied, respectively; P < 0.01), but not cumulative CO2 or CH4 flux (P = 0.08 and 0.51, respectively). Aboveground biomass production was greater with N application (6.8 Mg ha(-1) +/- 0.5 Mg ha(-1) dry matter) than without N (3.2 Mg ha(-1) +/- 0.5 Mg ha(-1)) (P < 0.05). Net greenhouse gas intensity (GHGI; kg GHG flux kg(-1) harvest yield as CO(2)eq) for switchgrass production was similar between N treatments (0.71 vs. 0.44 for 0 kg ha(-1) and 67 kg ha(-1) of N applied, respectively; P = 0.18). Published by Elsevier Ltd.
  • Authors:
    • Sauer, T.
    • Soolaneyakanahally, R.
    • de Gooijer, H.
    • Bentrup, G.
    • Schoeneberger, M.
    • Brendle, J.
    • Zhou, X.
    • Current, D.
  • Source: Journal of Soil and Water Conservation
  • Volume: 67
  • Issue: 5
  • Year: 2012
  • Authors:
    • Huggins, D.
    • Nelson, R.
    • Kemanian, A.
    • Higgins, S.
    • Stoeckle, C.
    • Marcos, J.
    • Collins, H.
  • Source: Journal of Soil and Water Conservation
  • Volume: 67
  • Issue: 5
  • Year: 2012
  • Summary: Conservation tillage is an agricultural strategy to mitigate atmospheric greenhouse gas (GHG) emissions. In eastern Washington, we evaluated the long-term effects of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on soil organic carbon (SOC) storage and nitrous oxide (N2O) emissions at three dryland and one irrigated location using the cropping systems simulation model CropSyst. Conversion of CT to NT produced the largest relative increase in SOC storage (Delta SOC, average yearly change relative to CT) in the top 30 cm (11.8 in) of soil where Delta SOC ranged from 0.29 to 0.53 Mg CO(2)e ha(-1) y(-1) (CO(2)e is carbon dioxide [CO2] equivalent of SOC; 0.13 to 0.24 tn CO(2)e ac(-1) yr(-1)).The Delta SOC were less with lower annual precipitation, greater fallow frequency, and when changing from CT to RT. Overall, Delta SOC decreased from the first to the third decade after conversion from CT to NT or RT. Simulations of Delta SOC for the conversion of CT to NT based on a 0 to 15 cm (0 to 5.9 in) soil depth were greater than the Delta SOC based on a 0 to 30 cm depth, primarily due to differences among tillage regimes in the depth-distribution of carbon (C) inputs and the resultant SOC distribution with depth. Soil erosion rates under CT in the study region are high, posing deleterious effects on soil quality, productivity, and aquatic systems. However, an analysis that includes deposition, burial, and sedimentation on terrestrial and aquatic systems of eroded SOC indicates that the substantial erosion reduction obtained with RT and NT may result only in minor additional SOC oxidation as compared to CT Simulated N2O emissions, expressed as CO2 equivalent, were not very different under CT, RT, and NT However, N2O emissions were sufficiently high to offset gains in SOC from the conversion of CT to RT or NT.Thus, reducing tillage intensity can result in net C storage, but mitigation of GHG is limited unless it is coupled with nitrogen (N) fertilizer management to also reduce N2O emission.
  • Authors:
    • Kuzyakov, Y.
    • Li, X.
    • Marschner, P.
    • Guo, J.
    • Fan, M.
    • Tian, J.
  • Source: European Journal of Soil Biology
  • Volume: 52
  • Issue: September–Octobe
  • Year: 2012
  • Summary: In the last three decades there has been a major shift in China's agriculture with the conversion from cereal fields to vegetable production, however little is known about the impact of this land use change on labile soil carbon and microbial community structure. We conducted a study to characterize dissolved organic carbon (DOC) and soil microbial community by comparing greenhouse vegetable fields with contrasting management intensity and adjacent cereal fields (wheat maize rotation) in Shouguang and Quzhou in North China. Compared with cereal fields, greenhouse vegetable cultivation increased soil organic carbon (SOC) and total nitrogen (TN), while it decreased the soil pH, particularly at the high-intensity site. The DOC concentration was significantly higher in greenhouse vegetable fields than in cereal fields, whereas DOC composition differed between greenhouse vegetable fields and cereal fields only at high management intensity. Chemical fractionation indicated that DOC from greenhouse vegetable fields with high management intensity was less decomposed than DOC from cereal fields, because the percentage of hydrophobic acid (HOA) as DOC was higher in vegetable fields. Vegetable production significantly changed the microbial community structure in comparison to cereal fields: high-intensity management increased total bacteria, G (+) bacteria and fungi, while low-intensity decreased fungi and increased bacteria-to-fungi ratio. The main factor affecting microbial community structure was soil pH in this study, accounting for 24% of the differences. (C) 2012 Elsevier Masson SAS. All rights reserved.
  • Authors:
    • Frear, C.
    • Chen, S.
    • Wang, G.
  • Source: Geoderma
  • Volume: 170
  • Year: 2012
  • Summary: Quantitative information is critical in policy making related to the roles of agriculture in greenhouse gas (GHG) emissions. A Unit Response (UR) curve method was developed in this study for modeling GHG emissions from soil after liquid manure applications. The emission sources (soils and liquid manures) are conceptualized as a set of linear cascaded chambers with equal storage-release coefficients, or two sets of cascaded chambers in parallel, each set having equal storage-release coefficients. The model is based on a two-parameter gamma distribution. Three parameters in this model denote the number of cascaded chambers, the storage-release coefficient, and the multiplier (referring to the total net emissions) added to the gamma distribution function. These parameters can be expressed as functions of site-specific background fluxes without applications of manure/fertilizer. The method was assessed with emissions data from five fields in Washington State. The results showed that at the WSU and Lynden sites, the average excess CH4 emissions due to manure applications were 0.39 and 0.17 kg CH4-C ha(-1), respectively: the average excess CO2 emissions were 216.50 and 25.20 kg CO2-C ha(-1), respectively; and the average excess N2O were 0.37 and 0.03 kg N2O-N ha(-1), respectively. The UR method may fill the gaps between field measurements, simple emission factor (EF) method, and complex process-oriented models. This method has the potential to be used for estimating additional GHG emissions due to manure/fertilizer applications.
  • Authors:
    • Six, J.
    • Tian,Jing
    • Kuzyakov, Y.
    • Lee, J.
    • Chen, H.
    • Christie, P.
    • Li, X.
    • Zhang, F.
    • Fan, M.
    • Yan, Y.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 150
  • Year: 2012
  • Summary: The conversion from cereal fields to vegetable production in the last three decades represents a significant shift in land use in China. Here, we studied the effects of conversion form cereal fields to vegetable production in north China on soil organic carbon (SOC) and total nitrogen (TN) in both bulk soil and soil aggregates. We used two approaches: (1) measurements of paired soil samples from wheat (Triticum aestivum L) - maize (Zea mays L) fields and adjacent greenhouses vegetable fields in three vegetable production areas representing various management intensities in terms of C and N inputs and frequency of tillage: (2) fractionating soil to distinguish intra-aggregate particulate organic matter (iPOM) and organo-mineral complexes (silt + clay). Our results indicated that converting cereal fields to greenhouse vegetable production with intermediate and high management intensity led to increases in SOC and TN and decreases in C:N ratios in the top soil. The accumulation rates of C and N in the surface soil (0-30 cm) were estimated to be 1.37 Mg C ha(-1) yr(-1) and 0.21 Mg N ha(-1) yr(-1) over an average period of 8 years after cereal fields to greenhouse vegetable production conversion. At the soil aggregate level, only the coarse (>250 mu m) and fine (53-250 mu m) iPOM fraction contributed to the increases in soil C (e.g., 49% and 51% of total C increases, respectively), while the coarse and fine iPOM, and silt + clay fraction accounted for 22%, 30% and 48%, respectively, of total N increases. This illustrates how the addition of readily available C (manure) and N (manure and inorganic N) leads to a temporary stabilization of C in relatively labile SOM fractions, but to a preferential stabilization of N in organo-mineral SOM fractions. In conclusion, the conversion to highly intensive vegetable systems in China leads to marked differences in C and N stabilization dynamics.
  • Authors:
    • Zhang, H.
    • Chen, F.
    • Kong, F.
    • Wei, Y.
    • Zhang, M.
  • Source: Transactions of the Chinese Society of Agricultural Engineering
  • Volume: 28
  • Issue: 6
  • Year: 2012
  • Summary: Distribution of soil organic carbon in different soil layer can be transformed by tillage practices, and then soil carbon storage was changed. The four indices of soil organic carbon (SOC), soil carbon density (SCD), soil respiration (SR) and biomass carbon (BC) were selected to verify the adaptability of DNDC model in North China based on model adaptation and then the model was used to simulate local dynamic change of soil carbon storage (SCS) and characteristics of greenhouse gas emission. The result showed that there was a high similarity between simulated values and observed values and the model proposed was suitable to apply to the simulation research of soil organic carbon for winter wheat-summer corn in North China. SOC and SCS simulated by the model increased from 2001-2010, and simulated data in the next 100 years showed that SOC with rotary tillage (RT), conventional tillage (CT) and no-tillage (NT) showed a severe rising tendency in the first 15 years, and rising tendency of NT could sustain for 40 years. By comparing changes of soil carbon storage for 100 years between each treatment, it was found that SCS values with CT were the highest in the first 20 years and SCS values with NT was the highest after first 20 years. The sequence of global warming potential (GWP) for each treatment was CT > RT > NT. The results showed that DNDC model could work well for winter wheat-summer corn in North China, and NT was beneficial to increase SCS and decrease GWP of farmland in the long run. It provides a reference for fixing carbon and reducing discharge of winter wheat-summer corn in North China.
  • Authors:
    • Cotrufo, M. F.
    • Stewart, C. E.
    • Zheng, J.
  • Source: Journal of Environmental Quality
  • Volume: 41
  • Issue: 5
  • Year: 2012
  • Summary: Biochar (BC) application to agricultural soils could potentially sequester recalcitrant C, increase N retention, increase water holding capacity, and decrease greenhouse gas (GHG) emissions. Biochar addition to soils can alter soil N cycling and in some cases decrease extractable mineral N (NO3- and NH4+) and N2O emissions. These benefits are not uniformly observed across varying soil types, N fertilization, and BC properties. To determine the effects of BC addition on N retention and GHG flux, we added two sizes (>250 and <250 mu m) of oak-derived BC (10% w/w) to two soils (aridic Argiustoll and aquic Haplustoll) with and without N fertilizer and measured extractable NO3- and NH4+ and GHG efflux (N2O, CO2, and CH4) in a 123-d laboratory incubation. Biochar had no effect on NO3-, NH4+, or N2O in the unfertilized treatments of either soil. Biochar decreased cumulative extractable NO3- in N fertilized treatments by 8% but had mixed effects on NH4+. Greenhouse gas efflux differed substantially between the two soils, but generally with N fertilizer BC addition decreased N2O 3 to 60%, increased CO2 10 to 21%, and increased CH4 emissions 5 to 72%. Soil pH and total treatment N (soil + fertilizer + BC) predicted soil N2O flux well across these two different soils. Expressed as CO2 equivalents, BC significantly reduced GHG emissions only in the N-fertilized silt loam by decreasing N2O flux. In unfertilized soils, CO2 was the dominant GHG component, and the direction of the flux was mediated by positive or negative BC effects on soil CO2 flux. On the basis of our data, the use of BC appears to be an effective management strategy to reduce N leaching and GHG emissions, particularly in neutral to acidic soils with high N content.