- Authors:
- Hunt, P. G.
- Novak, J. M.
- Frederick, J. R.
- Bauer, P. J.
- Source: Soil & Tillage Research
- Volume: 90
- Issue: 1-2
- Year: 2006
- Summary: Tillage affects the ability of coarse-textured soils of the southeastern USA to sequester C. Our objectives were to compare tillage methods for soil CO2 flux, and determine if chemical or physical properties after 25 years of conventional or conservation tillage correlated with flux rates. Data were collected for several weeks during June and July in 2003, October and November in 2003, and April to July in 2004 from a tillage study established in 1978 on a Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults). Conventional tillage consisted of disking to a depth of approximately 15Â cm followed by smoothing with an S-tined harrow equipped with rolling baskets. Conservation tillage consisted of direct seeding into surface residues. Flux rates in conservation tillage averaged 0.84 g CO2 m-2 h-1 in Summer 2003, 0.36 g CO2 m-2 h-1 in Fall 2003, 0.46 g CO2 m-2 h-1 in Spring 2004, and 0.86 g CO2 m-2 h-1 in Summer 2004. Flux rates from conventional tillage were greater for most measurement times. Conversely, water content of the surface soil layer (6.5 cm) was almost always higher with conservation tillage. Soil CO2 flux was highly correlated with soil water content only in conventional tillage. In conservation tillage, no significant correlations occurred between soil CO2 flux and soil N, C, C:N ratio, pH, bulk density, sand fraction, or clay fraction of the surface 7.5 cm. In conventional tillage, sand fraction was positively correlated, while bulk density and clay fraction were negatively correlated with soil CO2 flux rate, but only when the soil was moist. Long-term conservation tillage management resulted in more uniform within- and across-season soil CO2 flux rates that were less affected by precipitation events.
- Authors:
- Lampurlanés, J.
- Cantero-Martínez, C.
- Source: Soil & Tillage Research
- Volume: 85
- Issue: 1-2
- Year: 2006
- Summary: The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day(-1)) than under subsoil tillage (15.5 cm day(-1)) or minimum tillage (14.3 cm day(-1)) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (
- Authors:
- Tolbert, V. R.
- Mays, D. A.
- Nyakatawa, E. Z.
- Green, T. H.
- Bingham, L.
- Source: Biomass and Bioenergy
- Volume: 30
- Issue: 7
- Year: 2006
- Summary: Renewable energy sources such as bioenergy crops have significant potential as alternatives to fossil fuels. Potential environmental problems arising from soil sediment and nutrient losses in runoff water from bioenergy crops need to be evaluated in order to determine the sustainability and overall feasibility of implementing bioenergy development strategies. This paper discusses runoff, sediment, N, and total P losses from agricultural land (continuous cotton (Gossypium hirsutum L.)) converted to short-rotation sweetgum (Liquidamber styraciflua L.) plantations with and without fescue (Festuca elatior L.) and switchgrass (Panicum virgatum L.) bioenergy crops, compared to corn (Zea mays L.), on a Decatur silt loam soil in north Alabama, from 1995 to 1999. Runoff volume was significantly correlated to total rainfall and sediment yield in each year, but treatment differences were not significant. Sweetgum plots produced the highest mean sediment yield of up to 800 kg ha(-1) compared to corn and switchgrass plots, which averaged less than 200 kg ha(-1). Runoff NH4+ N losses averaged over treatments and years for spring season (3.1 kg ha(-1)) were three to five times those for summer, fall, and winter seasons. Runoff NO3- N for no-till corn and switchgrass plots in spring and summer were five to ten times that for sweetgum plots. No-till corn and switchgrass treatments had 2.4 and 2.1 kg ha(-1) average runoff total P, respectively, which were two to three times that for sweetgum treatments. Growing sweetgum with a fescue cover crop provides significantly lower risk of water pollution from sediment, runoff NH4+ N, and NO3- N. (c) 2006 Published by Elsevier Ltd.
- Authors:
- Lohr, L.
- Paudel, K. P.
- Cabrera, M.
- Source: Renewable Agriculture and Food Systems
- Volume: 21
- Issue: 2
- Year: 2006
- Summary: Cotton production is the number one crop enterprise in Georgia in terms of revenue generation. However, due to continuous deterioration of soil quality with conventional tillage and chemical fertilizer application, the economic viability and sustainability of cotton production in Georgia are questionable. Residue management systems (RMSs) comprising winter cover crops were analyzed as an alternative to the existing system, which consists of conventional tillage and chemical fertilizer using yield benefit, net revenue, carbon sequestration, and yield efficiency criteria. Four different RMSs were examined for profitability and input efficiency. Four RMSs encompassing tillage versus no-till and chemical versus organic sources of plant nutrients were compared for their yield and net return differences. No-till and poultry litter with a cover crop was the only system with a positive return and crop yield based on the results from experimental data. Limited results from the experimental field were reinforced using a simulation study. When cotton yield is simulated with an alternative level of organic matter and nitrogen application, production function shows efficiency in input application at the higher level of organic matter. Regression results based on an erosion productivity impact calculator/environmental policy integrated climate (EPIC) simulation indicated that, in the long term, a no-till and poultry litter system may have promise in the region. The results from simulation confirm the results from the experimental study. This study reflected a need to change the cotton management system from the 200-year-old practice of employing intensively cultivated conventional tillage and chemical fertilizers to a new renewable resource-based system where residue management and organic sources of nutrients would be the key components.
- Authors:
- Mallory-Smith, C.
- William, R. D.
- Peachey, B. E.
- Source: Weed Technology
- Volume: 20
- Issue: 1
- Year: 2006
- Summary: The effects of spring tillage sequence on summer annual weed populations were evaluated over two cycles of a 3-year crop rotation of snap beans ( Phaseolus vulgaris), sweetcorn ( Zea mays), and winter wheat ( Triticum aestivum). Continuous no-till (N) planting of vegetable crops each spring (NNNN) reduced summer annual weed density by 63-86% compared with that of continuous conventional tillage (CCCC), depending upon the site and herbicide level. Hairy nightshade ( Solanum sarrachoides) populations were reduced by 88 to 96% when spring tillage was eliminated from the crop rotation. The effects of the NNNN spring tillage sequence on weed density were similar at two sites even though the crop rotations at the two sites began with different crops. The rotational tillage sequence of NCNC at the East site, in a crop rotation that began with maize, reduced summer annual weed density by 46-51% compared with that of continuous conventional tillage and planting (CCCC) at low and medium herbicide rates, respectively. In contrast, the tillage sequence of CNCN in the same crop rotation and at the same site increased weed density by 80% compared with that of CCCC at a low herbicide rate. The effects of the NCNC and CNCN rotational tillage sequences on weed density were reversed at the West site, and was probably caused by pairing sweetcorn with conventional tillage rather than no-tillage. The reduction in summer annual weed density caused by reduced spring tillage frequency did not significantly increase crop yields.
- Authors:
- Whitehead, W. F.
- Singh, B. P.
- Sainju, U. M.
- Wang, S.
- Source: Journal of Environmental Quality
- Volume: 35
- Issue: 4
- Year: 2006
- Summary: Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops (legume [hairy vetch (Vicia villosa Roth)], non-legume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)) and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 em in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1) regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.
- Authors:
- Di, H. J.
- Stewart, A.
- Condron, L. M.
- Stark, C.
- O'Callaghan, M.
- Source: New Zealand Journal of Crop and Horticultural Science
- Volume: 34
- Issue: 3
- Year: 2006
- Summary: Farming practices can have significant effects on important soil processes, including nitrogen (N) dynamics and nitrate leaching. A lysimeter experiment was conducted to determine differences in N leaching resulting from past and current crop management practices. Intact monolith lysimeters (50cm diam. x 70cm deep) were taken from sites of the same soil type that had either been under long-term organic or conventional crop management. These were then managed according to established organic and conventional practices over 2% years using the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mays L.), rape (Brassica napus L. ssp. oleifera) plus a lupin green manure (Lupinus angustifolius L.)) and two fertiliser regimes, resulting in four treatments based on soil management history and current fertilisation strategy. Dry matter yield of each crop was determined after harvest and leachates were collected after significant rainfall events and analysed for total mineral N concentrations. Mineral fertilisation had a clear positive effect on yields of the first crop, whereas there were no considerable differences between treatments for the last crop owing to a significant positive effect of green manure incorporation on yields. Although there was a trend of lower mineral N leaching from organically fertilised soils (organic management: 24.2 kg N ha(-1); conventional management: 28.6), differences in N losses were not statistically significant between treatments. This shows that under the experimental conditions, leaching losses and crop yields were more strongly influenced by crop rotation and green manuring than by the presence or absence of mineral fertilisation. Overall, the study highlights the benefits of including a green manure in the crop rotation of any farming system.
- Authors:
- Roose, E.
- Mededjel, N.
- Arabi, M.
- Mazour, M.
- Morsli, B.
- Source: Soil Erosion and Carbon Dynamics
- Year: 2006
- Summary: Considering the effects of land use change during 1990s in the Tell mountains of northern Algeria, a research programme was developed by the Algerian INRF and the French IRD, to study the influence of land uses and cultural practices on runoff, erosion, soil fertility, and soil organic carbon (SOC) dynamics at the scale of runoff plots (100 to 220 m 2). The study included comparisons between traditional and improved land management systems for the principal soils of northern Algeria. The field experiments were conducted: (i) from 1993 to 1998 in the Beni-Chougran mountains near Mascara, in western Algeria; (ii) from 1991 to 2001 in the Tlemcen mountains in western Algeria; and (iii) from 1988 to 1992 around Medea in central Algeria. These regions are representative of the Tell mountains with regards to landscape, erosion manifestations (sheet erosion, gullies, floods and mass movements), and the various programmes of soil conservation since 1950s. The plots were set up on three soil types: (i) clayey brown Vertic soils on marl (Vertic Haploxeroll in Mascara and Tlemcen, Typic Haploxerert in Medea); (ii) brown calcareous soils on sandstone or limestone (Typic Haploxeroll in Mascara, Tlemcen and Medea); and (iii) red Fersiallitic soils on sandstone (Typic Haploxerept in Tlemcen and Medea). Data showed that at the plot scale, runoff and sheet erosion risks were generally moderate in the semiarid mountains of northern Algeria, even when the fields were cropped on steep slopes. Sediments were richer in OC than the topsoil (0-10 cm depth), and that this enrichment increased with soil surface cover (i.e., bare plots<grazed and cropped plots
- Authors:
- Bolland, M. D. A.
- Brennan, R. F.
- Source: Australian Journal of Experimental Agriculture
- Volume: 46
- Issue: 10
- Year: 2006
- Summary: Zinc (Zn) oxide is the most widely used fertiliser for the predominantly acidic to neutral soils of southwestern Australia. For these soils, the residual value of Zn oxide has been determined for wheat and lupin, but not for barley, oats, canola and triticale, which are also grown in the region. Just after termination of a long-term (17 year) field experiment that measured the residual value of Zn oxide for wheat, soil samples were collected from selected plots to use in 2 glasshouse experiments. The field experiment was on previously unfertilised, newly cleared duplex soil (sand with much lateritic ironstone gravel over clay) and before the experiment started DTPA extractable Zn for the top 10 cm of soil was 17 years for triticale. The 1.0 kg Zn/ha treatment remained fully effective for all crop species. As determined from projected estimates of the data, the time taken for Zn concentrations in young mature growth to reach critical values, the residual value of the 0.5 and 1.0 kg Zn/ ha treatments were least for wheat, barley and oats, were greater for lupin and canola, and greatest for triticale. There were a total of 7 wheat crops and 10 pasture years during the 17 years of the field experiment. For the 0.5 and 1.0 kg Zn/ha treatment applied in the field in 1983, 30 - 34% of the applied Zn was removed in grain of the 7 wheat crops grown before soil samples were collected to do the glasshouse experiments. The pasture was grazed by sheep and it was estimated that 16 - 24% of the Zn applied in 1983 may have been removed in wool and meat. Removal of Zn in grain and animal products therefore decreased the residual value of the Zn oxide fertiliser.
- Authors:
- Garbuio, F. J.
- Barth, G.
- Caires, E. F.
- Source: Soil & Tillage Research
- Volume: 89
- Issue: 1
- Year: 2006
- Summary: Brazil has extensive pasturelands that could be used, in part, for grain production. A no-till system was established on pastureland to obtain a suitable method for liming upon conversion from pasture to a no-till cropping system. The study was conducted during the period from 1998 to 2003, in Parana State (Brazil), on a clayey, kaolinitic, thermic Rhodic Hapludox. Soil chemical properties and grain production were evaluated after application of dolomitic lime. The experimental treatments were: control (no lime), split application of lime on the surface (three yearly applications of 1.5 t ha -1), surface lime (4.5 t ha -1), and incorporated lime (4.5 t ha -1). The lime rate was calculated to raise the base saturation in the topsoil (0-0.20 m) to 70%. The cropping sequence was: soyabean ( Glycine max L. Merril), barley ( Hordeum distichum L.), soyabean, wheat ( Triticum aestivum L.), soyabean, corn ( Zea mays L.), and soyabean. When surface-applied, liming neutralized acidity and increased exchangeable Ca 2++Mg 2+ to a depth of 0.10 m, and to a depth of 0.20 m, when incorporated. Split application of lime on the surface resulted in a slower neutralization reaction only in the first year after liming. Soil pH increased with liming and resulted in a decline of exchangeable Al 3+ and an increase in base saturation. At 0-0.05 m depth, lime incorporation resulted in lower levels of soil organic matter than surface application. It took 4-5 years after lime incorporation for soil organic matter to return to its baseline value. Liming increased grain yield in only one crop of soyabean, and only when lime was surface-applied at the full rate. However, cumulative grain yield was higher with liming than in the control treatment (no lime), regardless of the application method. Surface application of lime, at either full or split rates, was the best alternative to neutralize soil acidity when establishing a no-till system on pastureland because, in addition to conserving soil structure, it provided a greater economic return.