- Authors:
- Jayanthi, C.
- Shekinah, D. E.
- Sankaran, N.
- Source: Journal of Sustainable Agriculture
- Volume: 25
- Issue: 3
- Year: 2005
- Summary: In a small-scale resource-poor farm, modest increments in productivity are no longer sufficient to justify the investment of scarce resources. Integrated farming systems with multiple enterprises pave the way for realizing increased productivity, profitability and sustainability in small farms of the developing countries. A study conducted at Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India from July 2000 to March 2002 to optimize enterprise combination, increase employment and bring about maximum bioresource utilization and residue recycling for a 1-ha farm of the dryland tract of the western zone of Tamil Nadu compared four farming system combinations: FS 2 (crop+pigeon+goat+agroforestry+farm pond), FS 3 (crop+pigeon+buffalo+agroforestry+farm pond), and FS 4 (crop+pigeon+goat+buffalo+agroforestry+farm pond) with FS 1 (sorghum only) as the reference system. The results indicated the following: crop (0.80 ha) fertilized with buffalo manure produced on the farm, with pigeon (10 pairs on 0.01 ha), goat (5:1 female:male on 0.02 ha), buffalo (2 milking buffaloes+1 calf on 0.03 ha), agroforestry (0.10 ha) and farm pond (0.04 ha) was the profitable system enterprise that generated higher employment year-round. This system also facilitated the maximum recycling of resources and residues generated on the farm among the enterprises. The output and the waste of one enterprise served as input to another. The nutritive value of the system in terms of carbohydrate, protein and fat was also highest with this enterprise combination. Thus, FS 4 seems to be the best enterprise combination as revealed by the physical indicators. However, since the purchase and maintenance of buffalo enterprise involves higher costs, for farmers who have limited cash for investment, linkage of crop (0.80 ha) with pigeon (10 pairs on 0.01 ha), goat (5:1 female:male on 0.05 ha), agroforestry (0.10 ha) and farm pond (0.04 ha) is suggested as the alternative farming system for sustainability instead of conventional cropping alone.
- Authors:
- Source: Australian Cottongrower
- Volume: 26
- Issue: 3
- Year: 2005
- Summary: In a field in Australia, the influence of growing different rotation crops on the level of Fusarium oxysporum f.sp. vasinfectum (Fov) in the soil was monitored over three years in a summer field crop rotation experiment. In the 2001-02 and 2002-03 seasons of the trial, the same crop was grown on the same plot. The maize plots were a forced fallow during 2002-03. In 2003-04, the entire trial was oversown with cotton cv. Nu Emerald RR. Mung bean plots were replanted with Sicot 14B six weeks later. In glasshouse pot trials, soil naturally infested with Fov was used to examine different rotation options over five crop cycles with cotton oversown across all treatments in the final cycle. In the field, significantly more cotton plants survived until maturity following a bare fallow rotation compared to cotton plants grown following either maize, cotton or sorghum crops. The greatest percentage of cotton plant death and severity of disease in cotton occurred where soyabean or mung bean crops had previously been grown. In the glasshouse, rotation cycles that included a fallow treatment either one or two crops before growing cotton generally resulted in less severe Fusarium wilt (lower MDI) compared to cycles where a fallow treatment was not included occurred early in the cycle. Crops with larger root systems (sunflower, broccoli, lucerne, maize, sorghum) had more disease (higher MDI) in the following cotton compared to crops with smaller root systems (fallow, chickpea, field pea, millet, pigeon pea), after these crops had been grown for four continuous cycles, reflecting the role of residue and organic matter in pathogen survival and disease incidence. Fov has been isolated from mature plants growing in these pot trials including sunflower (5%); maize (4%); sorghum (3%) (roots only); mung bean (24%); field pea (20%); vetch (20%); pigeon pea (12%); chickpea (4%); and lucerne (4%) (stems and roots). Further research into rotation options and the roles of crop residue, organic matter and green manuring of crops in relation to pathogen survival are discussed.
- Authors:
- Source: Journal of Nematology
- Volume: 37
- Issue: 2
- Year: 2005
- Summary: Pearl millet ( Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton ( Gossypium hirsutum), corn ( Zea mays), and peanut ( Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid 'TifGrain 102' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet ('HGM-100' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf
- Authors:
- Ellis-Jones, J.
- Tripathi, B. P.
- Source: Renewable Natural Resources Management for Mountain Communities
- Year: 2005
- Summary: Agriculture is the main source of livelihood for most people in hillside areas of Nepal, and soil fertility is largely maintained through the use of organic manure. Discussions with farmers indicated five principal soil fertility management practices (manure, chemical fertilizer, compost based on leaf litters, growing legume crops, and in-situ manuring). Farmers identified five soil productivity indicators (crop productivity, soil characteristics (particularly soil colour), management requirement, species of weeds, diseases, and pests, and termites). Historical trends (increasing crop intensification, decreasing livestock numbers, increasing use of chemical fertilizers, reduced labour availability, and change in the climate over the last 30-40 years) showed a decline in soil productivity. Scored causal diagrams on soil fertility drawn from focus group discussions indicated that the primary causes of declining soil fertility and crop productivity are a decrease in available manure, increased cropping intensity, low use of chemical fertilizers, and change in climate. Scientific evaluation confirmed that altitude, farming system, and land types affected the availability of soil nutrients. Organic C, total N, available P and exchangeable K increased in less intensive farming systems, which were at higher altitudes. These nutrients as well as available Fe, Mn, and B in soil significantly increased in rainfed upland (bari) compared with irrigated lowland (khet). Covering manure with black plastic sheets resulted in faster decomposition as well as increased total N and exchangeable K. Covered manure applied to summer rainfed maize and upland rice as well as irrigated lowland spring maize increased grain and straw yields between 13 and 36% when compared with uncovered manure. Both farmers' indigenous knowledge and their criteria were as useful as scientific evaluation in assessing soil fertility improvements. Therefore, farmers' knowledge and criteria should be considered when monitoring soil fertility and crop productivity in farmer trials.
- Authors:
- Van Soest, L. J. M.
- Jansen, J.
- Goossens, P. J.
- Bas, N.
- Van Treuren, R.
- Source: Molecular ecology
- Volume: 14
- Issue: 1
- Year: 2005
- Summary: To support conservation policies for old Dutch grasslands that are still in agricultural use, morphological variation and AFLP-based (amplified fragment length polymorphism-based) genetic diversity was studied in perennial ryegrass and white clover populations and compared with the diversity in reference varieties. In addition, AFLP variation was also studied in grasslands located in nature reserves. From principal component analysis (PCA), it appeared that date of ear emergence in perennial ryegrass and characters related to plant vigour in white clover were the main morphological characters separating the reference varieties from the old Dutch grassland populations, and some of the grassland populations from each other. In both species, intrapopulation variation was lower for the reference varieties. Lower heterogeneity within the reference varieties was also found in the AFLP analysis. All common AFLP's observed in old Dutch grasslands could also be found in the reference varieties and nature reserves. Only a small number of low-frequency alleles found in old Dutch grasslands were absent from the other two groups. However, band frequencies of markers could vary considerably between populations, which may have been caused by selection. Analysis of the AFLP data by PCA distinguished the majority of reference varieties from the old Dutch grasslands, and showed genetic differentiation only between some grasslands. Comparison of old Dutch grasslands with grasslands in nature reserves indicated that basically the same range of genetic variation is covered by the two groups. Our study indicates that the Netherlands harbour a more or less continuous population for major parts of the diversity of perennial ryegrass and white clover. It was concluded that no specific conservation measures are presently needed to maintain genetic diversity of perennial ryegrass and white clover occurring in old Dutch grasslands.
- Authors:
- Scott, A. W.,Jr.
- Westphal, A.
- Source: Crop Science
- Volume: 45
- Issue: 1
- Year: 2005
- Summary: Rotylenchulus reniformis Linford & Oliveira is increasing in incidence in cotton-growing areas throughout the southern USA east of New Mexico. Cotton (Gossypium hirsutum L.) cultivars resistant to R. reniformis are currently unavailable. Management depends on a crop sequence with nonhosts of the nematode. In South Texas, the sequence of cotton with grain sorghum [ Sorghum bicolor (L.) Moench] or corn ( Zea mays L.) has become a standard practice. To improve farm efficiency, the implementation of rotation crops that are economically superior to grain sorghum is desirable. Eighteen cultivars of soybean [ Glycine max (L.) Merr.] were tested in nonfumigated and in fumigated sandy loam soil infested with R. reniformis to evaluate nematode resistance of soybean under field conditions. Shank application of 1,3-dichloropropene at a 38-cm depth reduced R. reniformis population densities at the 15- to 60-cm depth compared with preseason counts. The effect of each soybean cultivar on the growth and yield of a subsequent cotton crop was compared with the impact of grain sorghum and fallow. High-yielding cultivars of soybean (HY574, Padre, DP7375RR, and NK83-30) with reniform nematode-suppressing potential were identified among cultivars within maturity groups 5, 6, 7, and 8. In contrast, cotton yields following the susceptible cultivars Santa Rosa-R, Vernal, and DP6880RR were on average 25% lower than those following grain sorghum. The enrichment of cotton sequences with reniform nematode-resistant soybean cultivars is viable when the proper cultivars are chosen, whereas the use of reniform nematode-susceptible soybean cultivars is discouraged. The effective use of R. reniformis-resistant soybean cultivars to manage R. reniformis in cotton will depend on a number of additional economic parameters not studied in these experiments.
- Authors:
- Prado A., R. del
- Diaz S., J.
- Espinoza N., N.
- Source: XVII Congreso de la Asociación Latinoamericana de Malezas (ALAM) I Congreso Iberoamericano de Ciencia de las Malezas, IV Congreso Nacional de Ciencia de Malezas, Matanzas, Cuba, 8 al 11 de noviembre del 2005, pp. 326
- Year: 2005
- Summary: Eight biotypes of herbicide-resistant weeds have been described in Chile. All belong to grass weeds, specifically wild oat ( Avena fatua), ryegrass ( Lolium rigidum), Italian ryegrass ( L. multiflorum) and crested dogtailgrass ( Cynosurus echinatus), which are the most common in the main wheat, barley, oats, lupin and canola producing area (36degreesS to 39degreesS). The biotypes have shown resistance to ACCasa, ALS and EPSP inhibitors. Most biotypes have appeared in farm fields subjected to intensive land use, with annual crops, with a trend to wheat monoculture in some cases, and with intense use of no-till and herbicides with similar mode of action. Herbicides most frequently used have been glyphosate (EPSP), diclofop-methyl and clodinafop-propargyl (ACCasa). Cross-resistance to ACCasa was found in some biotypes of wild oat and ryegrass, with greater resistance to aryloxyphenoxypropionates than to cyclohexanediones. All ACCasaresistant biotypes were susceptible to iodosulfuron and flucarbazone Na (ALS). These two herbicides are recommended for wheat and began to be used just recently in the country. Two biotypes of Italian ryegrass were found resistant to glyphosate. One of these biotypes showed, in addition, resistance to ALS; that is to say, showed multiple resistance. Also the crested dogtailgrass biotype showed multiple resistance to ACCasa and ALS.
- Authors:
- Sullivan, D. G.
- Balkcom, K. S.
- Lamb, M. C.
- Rowland, D. L.
- Faircloth, W. H.
- Nuti, R. C.
- Source: Proceedings of the 27th Southern Conservation Tillage Systems Conference, Florence, South Carolina, USA, 27-29 June, 2005
- Year: 2005
- Summary: The interaction between reduced irrigation capacity and tillage, including the possible conservation of water with reduced tillage systems, is of vital interest to growers. A field study was initiated in the fall of 2001 to determine crop response under a simulated reduction in irrigation. Three tillage systems were replicated three times each under one of four irrigation levels (100% of a recommended amount, 66%, 33%, and 0% or dryland). Tillage systems were conventional tillage, wide-strip tillage and narrow-strip tillage. The test area was planted in triplicate, in a peanut-cotton-corn rotation, with each crop being present each year. A wheat (cv. AGS 1000) cover crop was drill-seeded each fall on conservation tillage plots. Cover crop termination was performed approximately three weeks prior to planting of each crop species. Tillage was significant for peanut yield and net return at the 0% irrigation level only. No trend in yield was evident, however, net return was consistently high with narrow-strip tillage in all years. Irrigation, at any level greater than 0%, masked tillage effects in both yield and net return. These data confirm the suitability of peanut to conservation tillage practices, including both wide- and narrow-strip tillage.
- Authors:
- Pookpakdi, A.
- Juntakool, S.
- Suwanketnikom, R.
- Chinawong, S.
- Woldetsadik, G.
- Source: Kasetsart Journal: Natural Science
- Volume: 39
- Issue: 1
- Year: 2005
- Summary: A field experiment was conducted during the rainy season of 2003 to study the effects of nitrogen rates (0, 10, 20 and 30 kg/ha) and moisture conservation practices (flat bed, ridge furrow, flat bed + mulching and ridge furrow + mulching) on the soil, soil water, yield and yield components of maize ( Zea mays) grown in a rift valley in central Ethiopia. Grain yield was affected by nitrogen fertilizer levels but 1000-grain weight, total biomass, straw yield, soil temperature, soil moisture content, and infiltration rate were not affected by the nitrogen rates. Significant effects in harvest index and water use efficiency of nitrogen rates were observed only at Dera and Melkassa, respectively. Moisture conservation practices improved grain and straw yields, harvest index, and total biomass compared to the use of flat beds due to the availability of moisture. Bulk density, infiltration rate, water use efficiency, and soil moisture content were also affected by moisture conservation practices. Mulching reduced soil temperature prior to maize maturity.
- Authors:
- Sayre, K. D.
- Govaerts, B.
- Deckers, J.
- Source: Field Crops Research
- Volume: 94
- Issue: 1
- Year: 2005
- Summary: Subtropical highlands of the world have been densely populated and intensively cropped. Agricultural sustainability problems resulting from soil erosion and fertility decline have arisen throughout this agro-ecological zone. This article considers practices that would sustain higher and stable yields for wheat and maize in such region. A long-term field experiment under rainfed conditions was started at El Batan, Mexico (2240 m a.s.l.; 19.31 degrees N, 98.50 degrees W;fine, mixed, thermic, Cumulic Haplustoll) in 1991. It included treatments varying in: (1) rotation (continuous maize (Zea mays) or wheat (Triticum aestivum) and the rotation of both); (2) tillage (conventional, zero and permanent beds); (3) crop residue management (full, partial or no retention). Small-scale maize and wheat farmers may expect yield improvements through zero tillage, appropriate rotations and retention of sufficient residues (average maize and wheat yield of 5285 and 5591 kg ha(-1)), compared to the common practices of heavy tillage before seeding, monocropping and crop residue removal (average maize and wheat yield of 3570 and 4414 kg ha(-1)). Leaving residue on the field is critical for zero tillage practices. However, it can take some time-roughly 5 years-before the benefits are evident. After that, zero tillage with residue retention resulted in higher and more stable yields than alternative management. Conventional tillage with or without residue incorporation resulted in intermediate yields. Zero tillage without residue drastically reduced yields, except in the case of continuous wheat which, although not high yielding, still performed better than the other treatments with zero tillage and residue removal. Zero tillage treatments with partial residue removal gave yields equivalent to treatments with full residue retention (average maize and wheat yield of 5868 and 5250 kg ha(-1)). There may be scope to remove part of the residues for fodder and still retain adequate amounts to provide the necessary ground cover. This could make the adoption of zero tillage more acceptable for the small-scale, subsistence farmer whose livelihood strategies include livestock as a key component. Raised-bed cultivation systems allow both dramatic reductions in tillage and opportunities to retain crop residues on the soil surface. Permanent bed treatments combined with rotation and residue retention yielded the same as the zero tillage treatments, with the advantage that more varied weeding and fertilizer application practices are possible. It is important small-scale farmers have access to, and are trained in the use of these technologies. (c) 2004 Elsevier B.V. All rights reserved.