• Authors:
    • Chhabra, B. S.
    • Wang, Z. H.
    • Lemke, R.
    • Malhi, S. S.
  • Source: Soil & Tillage Research
  • Volume: 90
  • Issue: 1-2
  • Year: 2006
  • Summary: Management practices that simultaneously improve soil properties and yield are crucial to sustain high crop production and minimize detrimental impact on the environment. The objective of this study was to determine the influence of tillage and crop residue management on crop yield, N uptake and C removal in crop, soil organic C and N, inorganic N and aggregation, and nitrous oxide (N2O) emissions on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada. The 4-year (1998-2001) field experiment was conducted with two tillage systems: no tillage (NT), and conventional tillage (CT); two levels of straw: straw retained (S), and straw removed (NS); and four rates of fertilizer N: 0, 40, 80, and 120 kg N ha-1, except no N to pea phase of the rotation. The plots were seeded to barley (Hordeum vulgare L.) in 1998, pea (Pisum sativum L.) in 1999, wheat (Triticum aestivum L.) in 2000 and canola (Brassica napus L.) in 2001. Tillage and straw treatments generally had no effect on crop yield during the first three years. But in 2001, NT produced 55, 32, and 20% greater canola seed, straw and chaff than CT, respectively, whereas straw retention increased seed and straw yield by 33 and 19% compared to straw removal. Seed, straw and chaff yield of canola increased with N rate up to 40 kg N ha-1, and root mass (0-15 cm depth) with N rate to 80 kg N ha-1. Amount of N uptake and C removed in wheat and canola generally increased with N rate, but tillage and straw management had no consistent effect. After four crop seasons, total organic C (TOC) and N (TN), light fraction organic matter (LFOM), C (LFC), and N (LFN) were generally greater with S than NS treatments. Tillage did not affect TOC and TN in soil, but LFOM, LFC, and LFN were greater or tended to be greater under NT than CT. There was no effect of tillage, straw and N fertilization on NH4-N in soil, but CT and S tended to have higher NO3-N concentration in 0-15 cm soil than NT and NS, respectively. Concentration of NO3-N increased substantially with N rate >=80 kg ha-1. The NT + S treatment had the lowest proportion (34%) of wind-erodible (12.7 mm) dry aggregates, compared to highest (50%) and lowest (18%) proportion of corresponding aggregates in CT + NS, indicating less potential for soil erosion when tillage was omitted and crop residues were retained. Amount of N lost as N2O was higher from N-fertilized than from zero-N plots, and it was substantially higher from N-applied CT plots than from N-applied NT plots. Retaining crop residues along with no-tillage improved soil properties and may also be better for the environment.
  • Authors:
    • Wander, M.
    • Marriott, E. E.
  • Source: Soil Biology and Biochemistry
  • Volume: 38
  • Issue: 7
  • Year: 2006
  • Authors:
    • Wander, M. M.
    • Marriott, E. E.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 3
  • Year: 2006
  • Summary: Even though organic management practices are intended to enhance soil performance by altering the quantity or quality of soil organic matter (SOM), there is no consensus on how to measure or manage SOM status. We investigated the veracity of common perceptions about SOM quantity in organically and conventionally managed soils by evaluating the relative responsiveness to organic management of particulate organic matter (POM) and the Illinois Soil N Test (IL-N), which has been proposed as a direct measure of labile N. Soil samples were obtained from nine farming systems trials in the USA. Soil organic C (SOC), total N (TN), POM-C, POM-N, and IL-N were compared among manure + legume-based organic, legume-based organic, and conventional farming systems. The organic systems had higher SOC and TN concentrations than conventional systems whether or not manure was applied. The POM-C, POM-N, and IL-N concentrations did not differ between manure + legume- and legume-based organic systems. The amount of N recovered in POM and IL-N was similar. Organic management enriched soil POM-C and -N by 30 to 40% relative to the conventional control and this level of enrichment was two to four times greater than that in any other fraction. The IL-N fraction was not a good measure of labile N as it was less enriched than POM and included recalcitrant components. This is evidenced by the strong correlation between IL-N and SOC, TN, climate and textural characteristics. Particulate organic matter provided clearer evidence of SOM and labile N accrual under organic management. Direct links between POM status and soil N supply and physical condition are being pursued to help farmers manage biologically based fertility.
  • Authors:
    • McLauchlan, K.
  • Source: Ecosystems
  • Volume: 9
  • Issue: 8
  • Year: 2006
  • Summary: Since the domestication of plant and animal species around 10,000 years ago, cultivation and animal husbandry have been major components of global change. Agricultural activities such as tillage, fertilization, and biomass alteration lead to fundamental changes in the pools and fluxes of carbon (C), nitrogen (N), and phosphorus (P) that originally existed in native ecosystems. Land is often taken out of agricultural production for economic, social, or biological reasons, and the ability to predict the biogeochemical trajectory of this land is important to our understanding of ecosystem development and our projections of food security for the future. Tillage generally decreases soil organic matter (SOM) due to erosion and disruption of the physical, biochemical, and chemical mechanisms of SOM stabilization, but SOM can generally reaccumulate after the cessation of cultivation. The use of organic amendments causes increases in SOM on agricultural fields that can last for centuries to millennia after the termination of applications, although the locations that provide the organic amendments are concurrently depleted. The legacy of agriculture is therefore highly variable on decadal to millennial time scales and depends on the specific management practices that are followed during the agricultural period. State factors such as climate and parent material (particularly clay content and mineralogy) modify ecosystem processes such that they may be useful predictors of rates of postagricultural biogeochemical change. In addition to accurate biogeochemical budgets of postagricultural systems, ecosystem models that more explicitly incorporate mechanisms of SOM loss and formation with agricultural practices will be helpful. Developing this predictive capacity will aid in ecological restoration efforts and improve the management of modern agroecosystems as demands on agriculture become more pressing.
  • Authors:
    • Baker, J. M.
    • Molina, J. A. E.
    • Allmaras, R. R.
    • Clapp, C. E.
    • Dolan, M. S.
  • Source: Soil & Tillage Research
  • Volume: 89
  • Issue: 2
  • Year: 2006
  • Summary: Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0-20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20-25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha-1, respectively) than with NT (13 and 1.2 Mg SOC and N ha-1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.
  • Authors:
    • McLaughlin, N. B.
    • Calder, W.
    • Welacky, T. W.
    • Tan, C. S.
    • Reynolds, W. D.
    • Drury, C. F.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: Innovative management practices are required to increase the efficiency of N fertilizer usage and to reduce nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural soils. The objectives of this study were to evaluate the feasibility of using conservation tillage and N fertilizer placement depth to reduce N2O and CO2 emissions associated with corn (Zea mays L.) production on clay loam soils in Eastern Canada. A 3-yr field study was established on a wheat (Triticum aestivum L.)-corn-soybean [Glycine max (L.) Merr.] rotation with each phase of the rotation present every year. Investigations were focused on the corn phase of the rotation. The tillage treatments following winter wheat included fall moldboard plow tillage (15 cm depth), fall zone-tillage (21 cm width, 15 cm depth), and no-tillage. The N placement treatments were "shallow" placement of sidedress N (2-cm depth) and "deep" placement of sidedress N (10-cm depth). Nitrous oxide emissions were measured 53 times and CO2 emissions were measured 43 times over three growing seasons using field-based sampling chambers. There was a significant tillage and N placement interaction on N2O emissions. Averaged over all three tillage systems and site-years, N2O emissions from shallow N placement (2.83 kg N ha-1 yr-1) were 26% lower than deep N placement (3.83 kg N ha-1 yr-1). The N2O emissions were similar among the tillage treatments when N was placed in the soil at a shallow depth. However, when N was placed deeper in the soil (10 cm), the 3-yr average N2O emissions from zone-tillage (2.98 kg N ha-1 yr-1) were 20% lower than from no-tillage (3.71 kg N ha-1 yr-1) and 38% lower than those from moldboard plow tillage (4.81 kg N ha-1 yr-1). Tillage type and N placement depth did not affect CO2 emissions (overall average = 5.80 Mg C ha-1 yr-1). Hence, zone-tillage and shallow N placement depth reduced N2O emissions without affecting CO2 emissions.
  • Authors:
    • Beegle, D. B.
    • Duiker, S. W.
  • Source: Soil & Tillage Research
  • Volume: 88
  • Issue: 1-2
  • Year: 2006
  • Summary: In permanent no-till (NT), soil nutrients are no longer mixed into the topsoil as with moldboard plow/disking (MD), whereas chisel/disking (CD) does limited mixing. Surface broadcast and/or banded nutrient applications may result in high and low fertility zones in permanent NT, with possible implications for soil sampling and nutrient placement.We investigated effects of 25 years of continuous NT, CD and MD with corn planted in the same row locations on organic matter (SOM), pH-H2O and Mehlich-3 extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). Vertical distribution at 0-5, 5-10 and 10-15 cm depths was measured as well as horizontal distributions across corn rows. We observed higher SOM and P in NT and CD than in MD in the 0-15 cm layer. SOM content was greatest in the top 5 cm in NT, but declined sharply with depth. SOM content in CD was not as high at the surface as in NT, but did not decline as fast as in NT. SOM was uniform but low throughout the 0-15 cm depth of MD. In all tillage systems, SOM did not vary across rows. Soil pH was higher in the 0-5 cm layer of NT than the deeper layers but the reverse was true in the CD or MD treatments. Concentrations of P, K and Ca were higher in the surface 0-5 cm than 10-15 cm depth of all tillage systems, but most strikingly in NT and CD. Starter fertilizer injection resulted in higher P and lower pH in the injection zone of all tillage treatments, but most notably in NT. The pH was depressed under the band of side-dressed nitrogen with all tillage systems. Potassium accumulated in the rows of the previous crop, probably because it leached from crop residue that accumulated there. Tillage did not affect Mg distribution. Optimal nutrient management in NT should take account of horizontal and vertical nutrient and pH distributions. Samples in long-term NT could potentially be taken to a shallower depth if calibration curves are available. To avoid underestimating P and K availability or overestimate lime needs, high P or decreased pH bands should be avoided, as well as crop rows. Possibilities to reduce P and K applications with banding need more investigation. Results show the importance of regular liming in NT to maintain surface pH in the optimum range, but also show that lime does not have to be incorporated.
  • Authors:
    • Bourbonniere, R. A.
    • Warner, B. G.
    • Robarts, R. D.
    • Murkin, H. R.
    • McDougal, R. L.
    • Olness, A.
    • Gleason, R. A.
    • Euliss, N. H. Jr.
  • Source: Science of the Total Environment
  • Volume: 361
  • Issue: 1-3
  • Year: 2006
  • Summary: We evaluated the potential of prairie wetlands in North America as carbon sinks. Agricultural conversion has resulted in the average loss of 10.1 Mg ha(-1) of soil organic carbon on over 16 million ha of wetlands in this region. Wetland restoration has potential to sequester 378 Tg of organic carbon over a 10-year period. Wetlands can sequester over twice the organic carbon as no-till cropland on only about 17% of the total land area in the region. We estimate that wetland restoration has potential to offset 2.4% of the annual fossil CO2 emission reported for North America in 1990. (c) 2005 Elsevier B.V. All rights reserved.
  • Authors:
    • Tanaka, D. L.
    • Liebig, M. A.
    • Frank, A. B.
  • Source: Soil & Tillage Research
  • Volume: 89
  • Issue: 1
  • Year: 2006
  • Summary: Soil respiration is a process influenced by land use, management practices, and environmental conditions. Our objectives were to evaluate relationships between management-induced differences in soil organic carbon (SOC) and soil CO2 efflux from continuous no-till spring wheat (Triticum aestivum L.), spring wheat-fallow under no-till, and a native mixed-grass prairie with grazing near Mandan, ND. A Werner-Sen-Chama soil complex (Entic Haplustoll, Typic Haplustoll, and Typic Calciustoll) was present at the grassland site and a Wilton silt loam (Pachic Haplustoll) at the cropping sites. Soil chambers were used to measure soil CO2 effluxes about every 21 days starting 14 May 2001 to 1 April 2003. Soil water and soil temperature were measured at time of CO2 efflux measurements. Soil organic carbon, microbial biomass carbon (MBC), and above and belowground plant biomass were measured in mid-July each year. Root biomass to 0.3 m depth of the undisturbed grassland was significantly greater (12.3 Mg ha-1) than under continuous wheat (1.3 Mg ha-1) and wheat-fallow (0.3 Mg ha-1). Grassland SOC content of 84 Mg ha-1 to 0.3 m soil depth was 1.2 times greater than continuous wheat and 1.3 times greater than wheat-fallow. The MBC of the grassland was 2.2 Mg ha-1, or 3.6 times greater than continuous wheat and 7.2 times greater than wheat-fallow treatments. Soil CO2 efflux averaged 2.8 g CO2-C m-2 day-1 for grassland, compared to 1.9 g CO2-C m-2 day-1 for wheat fallow and 1.6 g CO2-C m-2 day-1 for continuous wheat treatments. Although these CO2 efflux rates were based on measurements made at intervals of about 21 days, the differences among treatments with time were rather consistent. Differences in soil CO2 efflux among treatments could be attributed to differences in SOC and MBC, suggesting that land use plays a significant role in soil CO2 efflux from respiration.
  • Authors:
    • Robertson, G. P.
    • Parr, S.
    • Loecke, T. D.
    • Grandy, A. S.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: No-till cropping can increase soil C stocks and aggregation but patterns of long-term changes in N2O emissions, soil N availability, and crop yields still need to be resolved. We measured soil C accumulation, aggregation, soil water, N2O emissions, soil inorganic N, and crop yields in till and no-till corn-soybean-wheat rotations between 1989 and 2002 in southwestern Michigan and investigated whether tillage effects varied over time or by crop. Mean annual NO3- concentrations in no-till were significantly less than in conventional till in three of six corn years and during one year of wheat production. Yields were similar in each system for all 14 years but three, during which yields were higher in no-till, indicating that lower soil NO3- concentrations did not result in lower yields. Carbon accumulated in no-till soils at a rate of 26 g C m-2 yr-1 over 12 years at the 0- to 5-cm soil depth. Average nitrous oxide emissions were similar in till (3.27 {+/-} 0.52 g N ha d-1) and no-till (3.63 {+/-} 0.53 g N ha d-1) systems and were sufficient to offset 56 to 61% of the reduction in CO2 equivalents associated with no-till C sequestration. After controlling for rotation and environmental effects by normalizing treatment differences between till and no-till systems we found no significant trends in soil N, N2O emissions, or yields through time. In our sandy loam soils, no-till cropping enhances C storage, aggregation, and associated environmental processes with no significant ecological or yield tradeoffs.