- Authors:
- Source: Technical Report
- Year: 2005
- Authors:
- Sherrod, L.
- Robertson, G. P.
- Peterson, G. A.
- Halvorson, A. D.
- Mosier, A. R.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 72
- Issue: 1
- Year: 2005
- Summary: When appraising the impact of food and fiber production systems on the composition of the Earth's atmosphere and the 'greenhouse' effect, the entire suite of biogenic greenhouse gases - carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) - needs to be considered. Storage of atmospheric CO2 into stable organic carbon pools in the soil can sequester CO2 while common crop production practices can produce CO2, generate N2O, and decrease the soil sink for atmospheric CH4. The overall balance between the net exchange of these gases constitutes the net global warming potential (GWP) of a crop production system. Trace gas flux and soil organic carbon (SOC) storage data from long-term studies, a rainfed site in Michigan that contrasts conventional tillage (CT) and no-till (NT) cropping, a rainfed site in northeastern Colorado that compares cropping systems in NT, and an irrigated site in Colorado that compares tillage and crop rotations, are used to estimate net GWP from crop production systems. Nitrous oxide emissions comprised 40-44% of the GWP from both rain-fed sites and contributed 16-33% of GWP in the irrigated system. The energy used for irrigation was the dominant GWP source in the irrigated system. Whether a system is a sink or source of CO2, i.e. net GWP, was controlled by the rate of SOC storage in all sites. SOC accumulation in the surface 7.5 cm of both rainfed continuous cropping systems was approximately 1100 kg CO2 equivalents ha-1 y-1. Carbon accrual rates were about three times higher in the irrigated system. The rainfed systems had been in NT for >10 years while the irrigated system had been converted to NT 3 years before the start of this study. It remains to be seen if the C accrual rates decline with time in the irrigated system or if N2O emission rates decline or increase with time after conversion to NT.
- Authors:
- Source: Renewable Agriculture and Food Systems
- Volume: 20
- Issue: 4
- Year: 2005
- Summary: Management intensive rotational grazing (MIRG) has garnered a great deal of interest in recent years as a method for returning profitability to Northeastern dairy farms. This work uses a random sample of Connecticut dairy farmers to estimate a binary choice adoption model and then cost, productivity, and profit functions that control for the adoption choice. MIRG adopters are shown to be more educated and have less rented agricultural land (a proxy for lack of access to land within a short distance of the barn). MIRG adoption had no significant effects on costs and productivity, nor did it lower profits, per cow. Evidence was found, however, to suggest that full adopters of the technology had more profitable farms than partial adopters. These results also show the importance of controlling for the different characteristics of adopters when evaluating the returns to animal grazing.
- Authors:
- Year: 2005
- Summary: Canada's domestic Offset System is designed to encourage cost-effective domestic reductions or removals (i.e. carbon storage) of greenhouse gas emissions in activities that are not regulated. The System is a key element of the Government of Canada's plan to honour its commitments under the Kyoto Protocol.
- Authors:
- VandenBygaart, A. J.
- Angers, D. A.
- Rochette, P.
- Gregorich, E. G.
- Source: Soil & Tillage Research
- Volume: 83
- Issue: 1
- Year: 2005
- Summary: Agricultural soils can constitute either a net source or sink of the three principal greenhouse gases, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). We compiled the most up-to-date information available on the contribution of agricultural soils to atmospheric levels of these gases and evaluated the mitigation potential of various management practices in eastern Canada and northeastern USA. Conversion of native ecosystems to arable cropping resulted in a loss of ~22% of the original soil organic carbon (C)--a release of about 123 Tg C to the atmosphere; drainage and cultivation of organic soils resulted in an additional release of about 15 Tg C. Management practices that enhance C storage in soil include fertilization and legume- and forage-based rotations. Adopting no-till did not always increase soil C. This apparent absence of no-till effects on C storage was attributed to the type and depth of tillage, soil climatic conditions, the quantity and quality of residue C inputs, and soil fauna. Emission of N2O from soil increased linearly with the amount of mineral nitrogen (N) fertilizer applied (0.0119 kg N2O-N kg N-1). Application of solid manure resulted in substantially lower N2O emission (0.99 kg N2O-N ha-1 year-1) than application of liquid manure (2.83 kg N2O-N ha-1 year-1) or mineral fertilizer (2.82 kg N2O-N ha-1 year-1). Systems containing legumes produced lower annual N2O emission than fertilized annual crops, suggesting that alfalfa (Medicago sativa L.) and other legume forage crops be considered different from other crops when deriving national inventories of greenhouse gases from agricultural systems. Plowing manure or crop stubble into the soil in the autumn led to higher levels of N2O production (2.41 kg N2O-N ha-1 year-1) than if residues were left on the soil surface (1.19 kg N2O-N ha-1 year-1). Elevated N2O emission during freeze/thaw periods in winter and spring, suggests that annual N2O emission based only on growing-season measurements would be underestimated. Although measurements of CH4 fluxes are scant, it appears that agricultural soils in eastern Canada are a weak sink of CH4, and that this sink may be diminished through manuring. Although the influence of agricultural management on soil C storage and emission of greenhouse gases is significant, management practices often appear to involve offsets or tradeoffs, e.g., a particular practice may increase soil C storage but also increase emission of N2O. In addition, because of high variability, adequate spatial and temporal sampling are needed for accurate estimates of greenhouse gas flux and soil C stock. Therefore a full accounting of greenhouse gas contributions of agricultural soils is imperative for determining the true mitigation potential of management practices.
- Authors:
- Rochette, P.
- Pattey, E.
- Lemke, R. L.
- Wagner-Riddle, C.
- Gregorich, E. G.
- Ellert, B. H.
- Drury, C. F.
- Chantigny, M. H.
- Janzen, H. H.
- Helgason, B. L.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 72
- Issue: 1
- Year: 2005
- Summary: Agricultural soils emit nitrous oxide (N2O), a potent greenhouse gas. Predicting and mitigating N2O emissions is not easy. To derive national coefficients for N2O emissions from soil, we collated over 400 treatment evaluations (measurements) of N2O fluxes from farming systems in various ecoregions across Canada. A simple linear coefficient for fertilizer-induced emission of N2O in non-manured soils (1.18% of N applied) was comparable to that used by the Intergovernmental Panel on Climate Change (IPCC) (1.25% of N applied). Emissions were correlated to soil and crop management practices (manure addition, N fertilizer addition and inclusion of legumes in the rotation) as well as to annual precipitation. The effect of tillage on emissions was inconsistent, varying among experiments and even within experiments from year to year. In humid regions (e.g., Eastern Canada) no-tillage tended to enhance N2O emissions; in arid regions (e.g., Western Prairies) no-tillage sometimes reduced emissions. The variability of N2O fluxes shows that we cannot yet always distinguish between potential mitigation practices with small (e.g., < 10%) differences in emission. Our analysis also emphasizes the need for developing consistent experimental approaches (e.g., 'control' treatments) and methodologies (i.e. measurement period lengths) for estimating N2O emissions.
- Authors:
- Zentner, R. P.
- Liang, B. C.
- Sherrod, L.
- Gregorich, E. G.
- Paustian, K.
- Janzen, H. H.
- Campbell, C. A.
- Source: Agronomy Journal
- Volume: 97
- Issue: 2
- Year: 2005
- Summary: Summer fallow (fallow) is still widely used on the North American Great Plains to replenish soil moisture between crops. Our objective was to examine how fallowing affects soil organic carbon (SOC) in various agronomic and climate settings by reviewing long-term studies in the midwestern USA (five sites) and the Canadian prairies (17 sites). In most soils, SOC increased with cropping frequency though not usually in a linear fashion. In the Canadian studies, SOC response to tillage and cropping frequency varied with climate--in semiarid conditions, SOC gains under no-till were about 250 kg ha-1 yr-1 greater than for tilled systems regardless of cropping frequency; in subhumid environments, the advantage was about 50 kg ha-1 yr-1 for rotations with fallow but 250 kg ha-1 yr-1 with continuous cropping. Specific crops also influenced SOC: Replacing wheat (Triticum aestivum L.) with lentil (Lens culinaris Medikus) had little effect; replacing wheat with lower-yielding flax (Linum usitatismum L.) reduced SOC gains; and replacing wheat with erosion-preventing fall rye (Secale cereale L.) increased SOC gains. In unfertilized systems, cropping frequency did not affect SOC gains, but in fertilized systems, SOC gains often increased with cropping frequency. In a Colorado study (three sites each with three slope positions), SOC gains increased with cropping frequency, but the response tended to be highest at the lowest potential evaporation site (where residue C inputs were greatest) and least in the toeslope positions (despite their high residue C inputs). The Century and the Campbell et al. SOC models satisfactorily simulated the relative responses of SOC although they underestimated gains by about one-third.
- Authors:
- Parton, W. J.
- Del Grosso, S. J.
- Paustian, K.
- Conant, R. T.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 71
- Issue: 3
- Year: 2005
- Summary: Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to (1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, (2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C:N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1-4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10-125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.
- Authors:
- Irvine, B.
- Chen, Y.
- Doan, V.
- Source: Canadian Biosystems Engineering
- Volume: 47
- Year: 2005
- Summary: A two-year field study was conducted to investigate the performance of seeding canola crop as influenced by types of residue (canola, wheat, and pea) and types of seed opener (disc and hoe). Seed placement (seeding depth and seed scattering index), speed of crop emergence, and plant populations were used to evaluate the seeding performance. Seeding placement as affected by field wheel tracks (inside and outside wheel tracks) was also examined. The results showed that the disc opener produced a greater seeding depth and faster emergence than the hoe opener. The two openers resulted in the same level of plant population. In the first year, plots with pea residue resulted in greater and more uniform seeding depth, faster emergence, and higher plant population than plots with wheat and canola residues. In the second year, a better uniformity of seeding depth was observed for pea residue than the other two types of residue, while there were no significant differences between residue types in the other measured variables due to the extremely dry soil condition in the spring of that year. Seeds were placed more uniformly outside the wheel track than inside the wheel track, while the mean seeding depths were similar inside and outside the wheel track.
- Authors:
- Johnston, A.
- Turkington, T.
- Harker, K.
- Clayton, G.
- Lupwayi, N.
- Source: Better Crops with Plant Food
- Volume: 89
- Issue: 3
- Year: 2005
- Summary: A field experiment was conducted at Fort Vermilion in northwestern Alberta, Canada, during 1998-99 and 1999-2000 to determine the amount of potassium (K) released from crop residues of four different crop rotations that included red clover [ Trifolium pratense] green manure, field pea, canola [rape] and spring wheat, under conventional and no-till seeding systems. Crops were grown on soils that had soil test levels of 150 ppm K (0.5M NaHCO 3-extractable), and no fertilizer K was added. Crop residues dry matter returned to the soil by the different crops were considerably higher in 1999-2000 relative to 1998-1999, reflecting the higher crop production during the 1999 growing season. Crop residue yield showed a large difference between the two study periods in the amount of total K being returned to the field. The results illustrate that all crop residues considered released more than 90% of their accumulated K in the 52-week period. The tillage system had no effect on the release of K from the crop residues.