• Authors:
    • Cadrin, F.
    • Fan, M. X.
    • MacKenzie, A. F.
  • Source: Journal of Environmental Quality
  • Volume: 27
  • Issue: 3
  • Year: 1998
  • Summary: Nitrous oxide (N2O) produced from agricultural activities must be determined if management procedures to reduce emissions are to be established. From 1994 to 1996, N2O emissions were determined using a closed chamber technique. Continuous corn (Zea mays L.) at four N rates of 0, 170, 285, and 400 kg of N ha-1 was used on a Ste. Rosalie heavy clay (a very-fine-silty, mixed, nonacid, frigid Typic Humaquept) and a Chicot sandy loam (a fine-loamy, frigid, Typic Hapludalf). On two additional sites, a Ste. Rosalie clay and an Ormstown silty clay loam (a fine-silty, mixed, nonacid, frigid Humaquept) no-till (NT) and conventional tillage (CT); monocultural corn (CCC), monocultural soybean (Glycine max L.) (SSS); corn-soybean (SSC, CCS); and soybean-corn-alfalfa (Medicago sativa L.) phased rotations (SAC, CSA, and ACS) were used. Nitrogen rates of 0, 90, and 180 kg of N ha-1 for corn and 0, 20, and 40 kg of N ha-1 for SSS were used. Rates of N2O emission were measured from April to November in 1994 and 1995, and from mid-March to mid-November in 1996. Maximum N2O emissions reached from 120 to 450 ng of N m-2 s-1 at the Ormstown site to 50 to 240 ng of N m-2 s-1 at the Ste. Rosalie soil. Generally, N2O emissions were higher in the NT systems, with corn, and increased linearly with increasing N rates, and amounted to 1.0 to 1.6% of fertilizer N applied. The N2O emission rates were significantly related to soil denitrification rates, water-filled pore space, and soil NH4 and NO3 concentrations. A corn system using conventional tillage, legumes in rotation, and reduced N fertilizer would decrease N2O emission from agricultural fields.
  • Authors:
    • Johnson, D. E.
    • Minami, K.
    • Heinemeyer, O.
    • Freney, J. R.
    • Duxbury, J. M.
    • Mosier, A. R.
  • Source: Climatic Change
  • Volume: 40
  • Issue: 1
  • Year: 1998
  • Summary: Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.
  • Authors:
    • Bluhm, G.
    • Smith, J. L.
    • Mummey, D. L.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 70
  • Issue: 1
  • Year: 1998
  • Summary: Although agricultural soil management is the predominant anthropogenic source of nitrous oxide (N2O) to the atmosphere, little is known about the effects of alternative soil management practices on N2O emissions. In this study the NGAS model of Parton et al. (1996), coupled with a N and C cycling model, was used to simulate annual N2O emissions from 2639 cropland sites in the US using both no-till and conventional tillage management scenarios. The N2O mitigation potential of returning marginal cropland to perennial grass was also evaluated by comparing simulated N2O emissions from 306 Conservation Reserve Program (CRP) grassland sites with emissions from nearby cropland sites. Extensive soil and land use data for each site was obtained from the Natural Resource Inventory (NRI) database and weather data was obtained from NASA. The initial conversion of agricultural land to no-till showed greater N2O emissions per hectare than conventional tillage. Differences between the two tillage scenarios were strongly regional and suggest that conversion of conventionally tilled soil to no-till may have a greater effect on N2O emissions in drier regions. About 80% of the total emissions were from the Great plains and central regions mainly due to their large cultivated area. Croplands producing soy, wheat, and corn were responsible for about 68% of the total emissions with rice, cotton, and vegetable croplands having the greatest N2O flux (6.5-8.4 kg N2O-N ha-1 yr-1) under either scenario. Model simulations estimate that the agricultural lands in the US produce 448 Gg N2O-N y-1 under a conventional tillage scenario and 478 Gg N2O-N yr-1 under a no-till scenario. Model estimates also suggest that the conversion of 10.5 million hectares of cropland to grassland has a N2O mitigation potential of 31 Gg N2O-N yr-1, (8.4 Tg carbon equivalents yr-1). This value is similar in magnitude to many of the major greenhouse gas (GHG) emission-reduction strategies currently being considered to help meet US GHG reduction goals. Thus the GHG mitigation potential of this conversion is substantial and may be a viable strategy to help meet GHG reduction goals.
  • Authors:
    • Vitosh, M. L.
    • Pierce, F. J.
    • Christenson, D. R.
    • Peters, S. E.
    • Frye, W. W.
    • Blevins, R. L.
    • Dick, W. A.
  • Source: Soil & Tillage Research
  • Volume: 47
  • Issue: 3-4
  • Year: 1998
  • Summary: Soil organic matter has recently been implicated as an important sink for atmospheric carbon dioxide (CO2), However, the relative impacts of various agricultural management practices on soil organic matter dynamics and, therefore, C sequestration at spatial scales larger than a single plot or times longer than the typical three year experiment have rarely been reported. Results of maintaining agricultural management practices in the forest-derived soils of the eastern Corn (Zea mays L.) Belt states of Kentucky, Michigan, Ohio and Pennsylvania (USA) were studied. We found annual organic C input and tillage intensity were the most important factors in affecting C sequestration. The impact of rotation on C sequestration was primarily related to the way it altered annual total C inputs. The removal of above-ground plant biomass and use of cover crops were of lesser importance, The most rapid changes in soil organic matter content occurred during the first five years after a management practice was imposed with slower changes occurring thereafter. Certain management practices, e.g, no-tillage (NT), increased the soil's ability to sequester atmospheric CO2. The impact of this sequestration will be significant only when these practices are used extensively on a large percentage of cropland and when the C-building practices are maintained, Any soil C sequestered will be rapidly mineralized to CO2 if the soil organic matter building practices are not maintained,
  • Authors:
    • Paustian, K.
    • Elliott, E. T.
    • Doran, J. W.
  • Source: Soil & Tillage Research
  • Volume: 49
  • Issue: 1-2
  • Year: 1998
  • Summary: Two experiments were established in 1969 and 1970 near Sidney, NE, to determine the effect of moldboard plow (plow), sub-tillage (sub-till), and no-tillage (no-till) fallow management on soil properties, biological activities, and carbon and nitrogen cycling. One experiment was on land which had been broken from sod in 1920, seeded to crested wheatgrass [Agropyron cristatum (L.) Gaertn.] from 1957 to 1967, and cultivated for wheat again in 1967 (Previously Cultivated site). The second experiment was established on land that was in native mixed prairie sod until 1969 (Native Sod site), and compared the three tillage management practices listed above in a winter wheat-fallow system as well as replicated plots remaining in sod. Soil sampling done 10-12 years after these experiments were initiated, indicated that the biological environment near the soil surface (0-30 cm) with no-till was often cooler and wetter than that with conventional tillage management practices, especially moldboard plowing. Biological activity and organic C and N reserves were concentrated nearer the soil surface (0-7.6 cm) with no-tillage, resulting in greater potential for tie-up of plant available N in organic forms. However, regardless of tillage practice with wheat-fallow management at either site, long-term (22-27 years) losses of soil organic C from surface soil (0-30 cm) ranged from 12 to 32% (320-530 kg C ha(-1) year(-1)), respectively, for no-till and plowing. These soil C losses were closely approximated by losses measured to a depth of 122 cm, indicating that under the cropping, tillage, and climatic conditions of this study, soil C changes were adequately monitored by sampling to a depth of 30 cm within which most C loss occurs. No-till management maintains a protective surface cover of residue and partially decomposed materials near the soil surface. However, the decline in soil organic matter, and associated degradation in soil quality, will likely only be slowed by increasing C inputs to soil through use of a more intensive cropping system which increases the time of cropping and reduces the time in fallow. (C) 1998 Elsevier Science B.V. All rights reserved.
  • Authors:
    • Zuberer, D. A.
    • Hons, F. M.
    • Franzluebbers, A. J.
  • Source: Soil & Tillage Research
  • Volume: 47
  • Issue: 3-4
  • Year: 1998
  • Summary: Quality of agricultural soils is largely a function of soil organic matter. Tillage and crop management impact soil organic matter dynamics by modification of the soil environment and quantity and quality of C input. We investigated changes in pools and fluxes of soil organic C (SOC) during the ninth and tenth year of cropping with various intensities under conventional disk-and-bed tillage (CT) and no tillage (NT). Soil organic C to a depth of 0.2 m increased with cropping intensity as a result of greater C input and was 10% to 30% greater under NT than under CT. Sequestration of crop-derived C input into SOC was 22+-2% under NT and 9+-4% under CT (mean of cropping intensities +- standard deviation of cropping systems). Greater sequestration of SOC under NT was due to a lower rate of in situ soil CO2 evolution than under CT (0.22+-0.03 vs.0.27+-0.06 g CO2-C g-1 SOC yr-1). Despite a similar labile pool of SOC under NT than under CT (1.1+-0.1 vs. 1.0+-0.1 g mineralizable C kg-1 SOC d-1), the ratio of in situ to potential CO2 evolution was less under NT (0.56+-0.03) than under CT (0.73+-0.08), suggesting strong environmental controls on SOC turnover, such as temperature, moisture, and residue placement. Both increased C sequestration and a greater labile SOC pool were achieved in this low-SOC soil using NT and high-intensity cropping.
  • Authors:
    • Liang, B. C.
    • Anderson, D. W.
    • Greer, K. J.
    • Gregorich, E. G.
  • Source: Soil & Tillage Research
  • Volume: 47
  • Issue: 3
  • Year: 1998
  • Summary: Because of concerns about the eventual impact of atmospheric CO2 accumulations, there is growing interest in reducing net CO2 emissions from soil and increasing C storage in soil. This review presents a framework to assess soil erosion and deposition processes on the distribution and loss of C in soils. The physical processes of erosion and deposition affect soil C distribution in two main ways and should be considered when evaluating the impact of agriculture on C storage. First, these processes redistribute considerable amounts of soil C, within a toposequence or a field, or to a distant site. Accurate estimates of soil redistribution in the landscape or field are needed to quantify the relative magnitude of soil lost by erosion and accumulated by deposition. Secondly, erosion and deposition drastically alter the biological process of C mineralization in soil landscapes. Whereas erosion and deposition only redistribute soil and organic C, mineralization results in a net loss of C from the soil system to the atmosphere. Little is known about the magnitude of organic C losses by mineralization and those due to erosion, but the limited data available suggest that mineralization predominates in the first years after the initial cultivation of the soil, and that erosion becomes a major factor in later years. Soils in depositional sites usually contain a larger proportion of the total organic C in labile fractions of soil C because this material can be easily transported. If the accumulation of soil in depositional areas is extensive, the net result of the burial (and subsequent reduction in decomposition) of this active soil organic matter would be increased C storage. Soil erosion is the most widespread form of soil degradation. At regional or global levels its greatest impact on C storage may be in affecting soil productivity. Erosion usually results in decreased primary productivity, which in turn adversely affects C storage in soil because of the reduced quantity of organic C returned to the soil as plant residues. Thus the use of management practices that prevent or reduce soil erosion may be the best strategy to maintain, or possibly increase, the worlds soil C storage.
  • Authors:
    • Wagner, G. H.
    • Buyanovsky, G. A.
  • Source: Global Change Biology
  • Volume: 4
  • Issue: 2
  • Year: 1998
  • Summary: Long-term data from Sanborn Field, one of the oldest experimental fields in the USA, were used to determine the direction of soil organic carbon (SOC) dynamics in cultivated land. Changes in agriculture in the last 50 years including introduction of more productive varieties, wide scale use of mineral fertilizers and reduced tillage caused increases in total net annual production (TNAP), yields and SOC content. TNAP of winter wheat more than doubled during the last century, rising from 2.0-2.5 to 5-6 Mg ha(-1) of carbon, TNAP of corn rose from 3-4 to 9.5-11.0 Mg ha(-1) of carbon. Amounts of carbon returned annually with crop residues increased even more drastically, from less than 1 Mg ha(-1) in the beginning of the century to 33.5 Mg ha(-1) for wheat and 5-6 Mg ha(-1) for corn in the 90s. These amounts increased in a higher proportion because in the early 509 removal of postharvest residues from the field was discontinued. SOC during the first half of the century, when carbon input was low, was mineralized at a high rate: 89 and 114 g m(-2) y(-1) under untreated wheat and corn, respectively. Application of manure decreased losses by half, but still the SOC balance remained negative. Since 1950, the direction of the carbon dynamics has reversed: soil under wheat monocrop (with mineral fertilizer) accumulated carbon at a rate about 50 g m(-2) y(-1), three year rotation (corn/wheat/clover) with manure and nitrogen applications sequestered 150 g m(2) y(-1) of carbon. Applying conservative estimates of carbon sequestration documented on Sanborn Field to the wheat and corn production area in the USA, suggests that carbon losses to the atmosphere from these soils were decreased by at least 32 Tg annually during the last 40-50 years. Our computations prove that cultivated soils under proper management exercise a positive influence in the current imbalance in the global carbon budget.
  • Authors:
    • Camp, C. R.
  • Source: Transactions of the ASAE
  • Volume: 41
  • Issue: 5
  • Year: 1998
  • Summary: A comprehensive review of published information on subsurface drip irrigation was performed to determine the state of the art on the subject. Subsurface drip irrigation has been a part of drip irrigation development in the USA since its beginning about 1960, but interest has escalated since the early 1980s. Yield response for over 30 crops indicated that crop yield for subsurface drip was greater than or equal to that for other irrigation methods, including surface drip, and required less water in most cases. Lateral depths ranged from 0.02 to 0.70 m and lateral spacings ranged from 0.25 to 5.0 m. Several irrigation scheduling techniques, management strategies, crop water requirements, and water use efficiencies were discussed. Injection of nutrients, pesticides, and other chemicals to modify water and soil conditions is an important component of subsurface drip irrigation. Some mathematical models that simulate water movement in subsurface drip systems were included Uniformity measurements and methods, a limited assessment of root intrusion into emitters, and estimates of overall system longevity were also discussed. Sufficient information exists to provide general guidance with regard to design, installation, and management of subsurface drip irrigation systems. A significant body of information is available to assist in determining relative advantages and disadvantages of this technology in comparison with other irrigation types. Subsurface drip provides a more efficient delivery system if water and nutrient applications are managed properly. Waste water application, especially for turf and landscape plants, offers great potential Profitability and economic aspects have not been determined conclusively and will depend greatly on local conditions and constraints, especially availability and cost of water.
  • Authors:
    • Zalom, F. G.
    • van Bruggen, A. H. C.
    • Lanini, W. T.
    • Klonsky, K. M.
    • Ferris, H.
    • Clark, M. S.
  • Source: Agriculture, Ecosystems and Environment
  • Volume: 68
  • Issue: 1
  • Year: 1998
  • Summary: The effectiveness, economic efficiency, and environmental impact of pest management practices was compared in conventional, low-input, and organic processing tomato and field corn systems in northern California. Pests, including arthropods, weeds, pathogens, and nematodes, were monitored over an 8-year period. Although both crops responded agronomically to the production-system treatments, arthropods, pathogens, and nematodes were found to play a relatively small role in influencing yields. In contrast, weed abundance was negatively correlated with tomato and corn yields and appeared to partially account for lower yields in the alternative systems compared to the conventional systems. Lower pesticide use in the organic and low-input systems resulted in considerably less potential environmental impact but the economic feasibility of reducing pesticide use differed dramatically between the two crops. The performances of the organic and low-input systems indicate that pesticide use could be reduced by 50% or more in corn with little or no yield reduction. Furthermore, the substitution of mechanical cultivation for herbicide applications in corn could reduce pest management costs. By contrast, pesticide reductions in tomato would be economically costly due to the dependence on hand hoeing as a substitution for herbicides. Based on the performance of the low-input and organic tomato systems, a 50% pesticide reduction would increase average pest management costs by 50%.