- Authors:
- Stevens, W. E.
- Scharf, P. C.
- Kitchen, N. R.
- Williams, J. D.
- Source: Precision Agriculture
- Volume: 11
- Issue: 3
- Year: 2010
- Summary: Precise management of nitrogen (N) using canopy color in aerial imagery of corn (Zea mays L.) has been proposed as a strategy on which to base the rate of N fertilizer. The objective of this study was to evaluate the relationship between canopy color and yield response to N at the field scale. Six N response trials were conducted in 2000 and 2001 in fields with alluvial, claypan and deep loess soil types. Aerial images were taken with a 35-mm slide film from C1100 m at the mid- and late-vegetative corn growth stages and processed to extract green and red digital values. Color values of the control N (0 kg N ha-1) and sufficient N (280 kg N ha-1 applied at planting) treatments were used to calculate the relative ratio of unfertilized to fertilized and relative difference color values. Other N fertilizer treatments included side-dressed applications in increments of 56 kg N ha-1. The economic optimal N rate was weakly related (R2<= 0.34) or not related to the color indices at both growth stages. For many sites, delta yield (the increase in yield between control N and sufficient N treatments) was related to the color indices (R2<= 0.67) at the late vegetative growth stage; the best relationship was with green relative difference. The results indicate the potential for color indices from aerial photographs to be used for predicting delta yield from which a site-specific N rate could be determined.
- Authors:
- Hyman, J. M.
- Lichau, A.
- Richardson, A.
- Kerchner, C. D.
- Winsten, J. R.
- Source: Journal of Dairy Science
- Volume: 93
- Issue: 4
- Year: 2010
- Summary: This paper provides a summary of results from a recent survey of 987 dairy farmers in 4 northeastern US states. The survey results provide descriptive characteristics of the current state of dairy farming in the region, as well as farmer satisfaction levels, concerns, and plans for the future of their farming operations. The paper analyses characteristics of two increasingly important dairy production systems used in the Northeast. Averages from across the survey states (Maryland, Pennsylvania, New York, and Vermont) show that approximately 13% of dairy producers use management-intensive or rotational grazing and 7% use large, modern confinement systems with more than 300 cows. These more specialized production systems show many significant differences in farm and farmer characteristics, satisfaction levels, and plans for the future compared with farms using more traditional production systems. The changing structure of the dairy industry has potentially important implications for environmental quality, rural communities, and the food system.
- Authors:
- Franti, T. G.
- Drijber, R. A.
- Wortmann, C. S.
- Source: Agronomy Journal
- Volume: 102
- Issue: 4
- Year: 2010
- Summary: Continuous no-till (NT) can be beneficial relative to tillage with fewer field operations, reduced erosion, and surface soil improvement. Field research was conducted at two locations for 5 yr in eastern Nebraska to test the hypotheses that one-time tillage of NT can result in increased grain yield, reduced stratification of soil properties persisting for at least 5 yr, a net gain in soil organic carbon (SOC), and a restoration of the soil microbial community to NT composition. Stratification of soil test P, SOC, and bulk density was similar for all tillage treatments at 5 yr after tillage. Water stable soil aggregates (WSA) were not affected by tillage treatments except that there was more soil as macroaggregates at one location in the 5- to 10-cm depth with moldboard plow tillage (MP) compared with NT. Tillage treatments had no effect on SOC mass in the 0- to 30-cm depth. Soil microbial biomass was greater at the 0- to 5-cm compared with the 5- to 10-cm depth. Biomass of bacteria, actinomycetes, and arbuscular mycorrhizal fungi was greater with NT compared with one-time MP at one location but not affected by the one-time tillage at the other location. Microbial community structure differed among tillage treatments at the 0- to 5-cm depth at one location but not at the other location. Grain yield generally was not affected by tillage treatment. One-time tillage of NT can be done without measureable effects on yield or soil properties.
- Authors:
- Lynd, L. R.
- Gunderson, C. A.
- Borsuk, M. E.
- Davis, E. B.
- Wullschleger, S. D.
- Source: Agronomy Journal
- Volume: 102
- Issue: 4
- Year: 2010
- Summary: Fundamental to deriving a sustainable supply of cellulosic feedstock for an emerging biofuels industry is understanding how biomass yield varies as a function of crop management, climate, and soils. Here we focus on the perennial switchgrass (Panicum virgatum L.) and compile a database that contains 1190 observations of yield from 39 field trials conducted across the United States. Data include site location, stand age, plot size, cultivar, crop management, biomass yield, temperature, precipitation, and information on land quality. Statistical analysis revealed the major sources of variation in yield. Frequency distributions of yield for upland and lowland ecotypes were unimodal, with mean (+/-SD) biomass yields of 8.7 ± 4.2 and 12.9 ± 5.9 Mg ha-1 for the two ecotypes, respectively. We looked for, but did not find, bias toward higher yields associated with small plots or preferential establishment of stands on high quality lands. A parametric yield model was fit to the data and accounted for one-third of the total observed variation in biomass yields, with an equal contribution of growing season precipitation, annual temperature, N fertilization, and ecotype. The model was used to predict yield across the continental United States. Mapped output was consistent with the natural range of switchgrass and, as expected, yields were shown to be limited by precipitation west of the Great Plains. Future studies should extend the geographic distribution of field trials and thus improve our understanding of biomass production as a function of soil, climate, and crop management for promising biofuels such as switchgrass.
- Authors:
- Tieszen, L. L.
- Gilmanov, T. G.
- Ji, L.
- Wylie, B. K.
- Zhang, L.
- Source: Rangeland Ecology & Management
- Volume: 63
- Issue: 1
- Year: 2010
- Summary: The Northern Great Plains grasslands respond differently under various climatic conditions; however, there have been no detailed studies investigating the interannual variability in carbon exchange across the entire Northern Great Plains grassland ecosystem. We developed a piecewise regression model to integrate flux tower data with remotely sensed data and mapped the 8-d and 500-m net ecosystem exchange (NEE) for the years from 2000 to 2006. We studied the interannual variability of NEE, characterized the interannual NEE difference in climatically different years, and identified the drought impact on NEE. The results showed that NEE was highly variable in space and time across the 7 yr. Specifically, NEE was consistently low (-35 to 32 g C . m(-2).yr(-1)) with an average annual NEE of -2 +/- 24 g C . m(-2).yr(-1) and a cumulative flux of -15 g C . m(-2). The Northern Great Plains grassland was a weak source for carbon during 2000-2006 because of frequent droughts, which strongly affected the carbon balance, especially in the Western High Plains and Northwestern Great Plains. Comparison of the NEE map with a drought monitor map confirmed a substantial correlation between drought and carbon dynamics. If drought severity or frequency increases in the future, the Northern Great Plains grasslands may become an even greater carbon source.
- Authors:
- Robertson, G. P.
- Grace, P. R.
- Bohm, S.
- McSwiney, C. P.
- Source: Journal of Natural Resources & Life Sciences Education
- Volume: 39
- Year: 2010
- Summary: Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil carbon process model, provides a simple introduction to the concepts and magnitudes of gas emissions associated with crop management. Users choose a county of interest on an introductory screen and are taken to the input/output window, where they choose crops, yields, tillage practices, or nitrogen fertilizer rates. Default values are provided based on convention and county averages. Outputs include major contributors of greenhouse gases in field crops: soil carbon change, nitrous oxide (N2O) emission, fuel use, and fertilizer. We contrast conventional tillage and no-till in a corn-soybean-wheat (Zea mays L. Glycine max (L.) Merr. Triticum aestivum L.) rotation and compare continuous corn fertilized at 101 and 134 kg N ha -1 yr -1. In corn years, N2O was the dominant GHG, due to high fertilizer requirements for corn. No-till management reduced greenhouse gas emissions by 50% due to net soil carbon storage. Continuous corn fertilized at 101 kg N ha-1 yr-1 emitted 1.25 Mg CO2 equivalents ha-1 yr-1 compared with 1.42 Mg CO2 equivalents ha-1 yr-1 at 134 kg N ha-1 yr-1, providing a 12% GHG savings. The calculator demonstrates how cropping systems and management choices affect greenhouse gas emissions in field crops.
- Authors:
- Source: Renewable Agriculture and Food Systems
- Volume: 25
- Issue: 3
- Year: 2010
- Summary: Weeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for
weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in
conventional farming has reduced herbicide use by 50% because weed density declines in cropland across time. In this
paper, we suggest a 9-year rotation comprised of perennial forages and annual crops that will disrupt weed population
growth and reduce weed density in organic systems. Lower weed density will also improve effectiveness of weed control
tactics used for an individual crop. The rotation includes 3-year intervals of no-till, which will improve both weed
population management and soil health. Even though this rotation has not been field tested, it provides an example of
designing rotations to disrupt population dynamics of weeds. Also, producers may gain additional benefits of higher crop
yield and increased nitrogen supply with this rotation design.
- Authors:
- Stahlman,P. W.
- Vigil,M. F.
- Benjamin,J. G.
- Schlegel,A. J.
- Stone,L. R.
- Blanco-Canqui,H.
- Source: Agronomy Journal
- Volume: 102
- Issue: 4
- Year: 2010
- Summary: Because of increased concerns over compaction in no-till (NT) soils, it is important to assess how continuous cropping systems influence risks of soil compaction across a range of soils and NT management systems. We quantified differences in maximum bulk density (BD max) and critical water content (CWC) by the Proctor test, field bulk density (rho b), and their relationships with soil organic carbon (SOC) concentration across three (>11 yr) cropping systems on a silty clay loam, silt loam, and loam in the central Great Plains. On the silty clay loam, BD max in sorghum [ Sorghum bicolor (L.) Moench]-fallow (SF) and winter wheat [ Triticum aestivum (L.)]-fallow (WF) was greater than in continuous wheat (WW) and continuous sorghum (SS) by 0.1 Mg m -3 in the 0- to 5-cm soil depth. On the loam, BD max in WF was greater than in W-corn ( Zea mays L.)-millet ( Panicum liliaceum L.) (WCM) by 0.24 Mg m -3 and perennial grass (GRASS) by 0.11 Mg m -3. On the silt loam, soil properties were unaffected by cropping systems. Elimination of fallowing increased the CWC by 10 to 25%. The rho b was greater in WF (1.52 Mg m -3) than in WW (1.16 Mg m -3) in the silty clay loam, while rho b under WF and WCF was greater than under WCM and GRASS in the loam for the 0- to 5-cm depth. The BD max and rho b decreased whereas CWC increased with an increase in SOC concentration in the 0- to 15-cm depth. Overall, continuous cropping systems in NT reduced near-surface maximum soil compaction primarily by increasing SOC concentration.
- Authors:
- Caesar-TonThat, T.
- Wright, S. F.
- Sainju, U. M.
- Kolberg, R.
- West, M.
- Source: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a Changing World, Brisbane, Australia, 1-6 August 2010. Congress Symposium 2: Soil ecosystem services
- Year: 2010
- Summary: Lentil ( Lens culinaris Medikus CV. Indianhead) used to replace fallow in spring-wheat ( Triticum aestivum) rotation in the semi-arid Eastern Montana USA, may improve soil quality. We evaluate the 14 years influence of continuous wheat under no-tillage (WNT), fallow-wheat under conventional tillage (FCT) and no-tillage (FNT), lentil-wheat under tillage (LCT) and no-tillage (LNT) on soil formation and stability, and on the amount of immunoreactive easily-extractable glomalin (IREEG) and soil aggregating basidiomycete fungi in the 4.75-2.00, 2.00-1.00, 1.00-0.50, 0.50-0.25, and 0.25-0.00 mm aggregate-size classes, at 0-5 cm soil depth. The 4.75-2.00 mm aggregate proportion was higher in LNT than FNT and higher in LT than FT treatments and mean weight diameter (MWD) was higher when lentil was used to replace fallow under NT. No-till systems had higher glomalin and basidiomycete amount than CT in all aggregate-size classes and glomalin was higher in LNT than FNT in aggregate-size classes less than 0.50 mm. We conclude that residue input in NT systems triggers fungal populations which are involved in soil binding in aggregates, and that replacing fallow by lentil in spring wheat rotation in dryland seems to favor aggregate formation/stability under NT probably by increasing N fertility during the course of 14 years.
- Authors:
- DeHaan,L. R.
- Cox,C. M.
- Tassel,D. L. van
- Cox,T. S.
- Source: Crop & Pasture Science
- Volume: 61
- Issue: 7
- Year: 2010
- Summary: Annual cereal, legume and oilseed crops remain staples of the global food supply. Because most annual crops have less extensive, shorter-lived root systems than do perennial species, with a correspondingly lower capacity to manage nutrients and water, annual cropping systems tend to suffer higher levels of soil erosion and generate greater water contamination than do perennial systems. In an effort to reduce soil degradation and water contamination simultaneously - something that neither no-till nor organic cropping alone can accomplish - researchers in the United States, Australia and other countries have begun breeding perennial counterparts of annual grain and legume crops. Initial cycles of hybridization, propagation and selection in wheat, wheatgrasses, sorghum, sunflower and Illinois bundleflower have produced perennial progenies with phenotypes intermediate between wild and cultivated species, along with improved grain production. Further breeding cycles will be required to develop agronomically adapted perennial crops with high grain yields.