• Authors:
    • Brown, S.
    • Pearson, T.
  • Year: 2010
  • Summary: From exec. summary: ...The purpose of the study was to develop a methodology that could be used to calculate emission reduction offsets from activities associated with nitrogen-based fertilizers in US agriculture. To have credibility in the developing carbon market the methodology would have to accurately represent the impact on the atmosphere and would involve the input of significant site-specific data. Thus the Intergovernmental Panel on Climate Change (IPCC)'s Tier 1 approach is far from sufficient as it simply multiplies the quantity applied by defaults to calculate emissions. Yet a methodology must not be excessively expensive to implement as it would preclude the possibility of any project being implemented thus direct measurement of nitrous oxide from fields using measurement chambers could not be considered. A methodology was chosen for testing that included site specific information on type of fertilizer, soil carbon concentration, drainage, pH, soil texture and crop type. The highly parameterized, tested and peer-reviewed model DNDC (Denitrification-Decomposition) was used to estimate the "real" atmospheric impact at the test sites. Test sites were chosen in Arkansas (cotton), Iowa (corn) and California (lettuce) for the 2009 growing season.... Neither the IPCC Tier 1 method nor the new method proposed here based on Bouwman et al (2002) are sufficient for an offset project methodology that would be able to evaluate atmospheric impact of a broad range on fertilizer management practices. Therefore alternative approaches must be considered.... This comparison highlighted a further weakness of the simplified models; the simplified models can only evaluate the impacts of changes in quantify of fertilizer applied not in the methods of application....The recommendation arising from this report is to develop an offset methodology based on the application of DNDC for projects. A DNDC methodology will require expertise but atmospheric integrity is better guaranteed, monitoring would likely be inexpensive and costs would be low considering that offset projects are likely to consist of aggregations of large numbers of farms.
  • Authors:
    • Brown, S.
    • Grimland, S.
    • Pearson, T. R. H.
  • Year: 2010
  • Summary: From exec summary: "....The basis of the direct and indirect emission calculations is a detailed empirical model that is discussed in the companion report to this work (hereafter referred to as the modified Bouwman model-MBM). The MBM incorporates various factors including quantity of fertilizer used, type of fertilizer, soil texture and drainage, pH and soil carbon concentration to predict nitrous oxide emissions. The companion report shows that the approach of the MBM is not sufficient at the project level, however, for a broad national analysis the approach is ideal....Our analysis resulted in an estimate of total annual N2O emission of 61 million tons of carbon dioxide equivalent for the three crops across the 31 states. Seventy percent of these emissions were from corn fields, 25% from wheat fields and 5% from cotton.
  • Authors:
    • Goulding, K. W. T.
    • Glendining, M. J.
    • Poulton, P. R.
    • Johnston, A. E.
    • Jenkinson, D. S.
    • Powlson, D. S.
  • Source: Journal of Environmental Quality
  • Volume: 39
  • Issue: 2
  • Year: 2010
  • Authors:
    • Kimble, J. M.
    • Follett, R. F.
    • Qian, Y.
  • Source: Soil Science Society of America Journal
  • Volume: 74
  • Issue: 2
  • Year: 2010
  • Summary: Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect C input and storage in these systems. Research was conducted to determine the rate of soil organic C (SOC) changes, soil C sequestration, and SOC decomposition of fine fescue (Festuca spp.) (rainfed and irrigated), Kentucky bluegrass (Poa pratensis L.) (irrigated), and creeping bentgrass (Agrostis palustris Huds.) (irrigated) using C isotope techniques. We found that 4 yr after establishment, about 17 to 24% of SOC at 0 to 10 cm and 1 to 13% from 10 to 20 cm was derived from turfgrass. Irrigated fine fescue added the most SOC (3.35 Mg C ha-1 yr-1) to the 0- to 20-cm soil profile but also had the highest rate of SOC decomposition (2.61 Mg C ha-1 yr-1). The corresponding additions and decomposition rates for unirrigated fine fescue, Kentucky bluegrass, and creeping bentgrass in the top 20-cm soil profile were 1.39 and 0.87, 2.05 and 1.73, and 2.28 and 1.50 Mg C ha-1 yr-1, respectively. Irrigation increased both SOC input and decomposition. We found that all turfgrasses exhibited significant C sequestration (0.32-0.78 Mg ha-1 yr-1) during the first 4 yr after turf establishment. The net C sequestration rate was higher, however, for irrigated fine fescue and creeping bentgrass than for Kentucky bluegrass. To evaluate total C balance, additional work is needed to evaluate the total C budget and fluxes of the other greenhouse gases in turfgrass systems.
  • Authors:
    • Rabobank
  • Source: Rabobank U.S. Farm and Ranch Survey
  • Year: 2010
  • Authors:
    • RGGI
  • Volume: 2010
  • Year: 2010
  • Summary: The Regional Greenhouse Gas Initiative (RGGI) is the first market-based regulatory program in the United States to reduce greenhouse gas emissions. RGGI is a cooperative effort among the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont. Together, these states have capped and will reduce CO2 emissions from the power sector 10 percent by 2018.
  • Authors:
    • Salas, W.
  • Year: 2010
  • Authors:
    • Sands, L.
    • Hessenflow-Harper, S.
    • Shipley, J.
  • Year: 2010
  • Authors:
    • Eviner, V.
    • Ryals, R.
    • Silver, W. L.
  • Source: Rangeland Ecology & Management
  • Volume: 63
  • Issue: 1
  • Year: 2010
  • Summary: Rangeland ecosystems cover approximately one-third of the land area in the United States and half of the land area of California. This large land area, coupled with the propensity of grasses to allocate a considerable proportion of their photosynthate belowground, leads to high soil carbon (C) sequestration potential. Annual grasslands typical of the Mediterranean climates of the western United States differ in their life history strategies from the well-studied perennial grasslands of other regions and thus may also differ in their soil C pools and fluxes. In this study we use the literature to explore patterns in soil C storage in annual grass-dominated rangelands in California. We show that soil C is highly predictable with depth. Cumulative soil C content increased to 2-3-m depth in rangelands with a woody component and to at least 1-m depth in open rangelands. Soil C within a given depth varied widely, with C content in the top 1-m depth spanning almost 200 Mg C·ha-1 across sites. Soil C pools were not correlated with temperature or precipitation at a regional scale. The presence of woody plants increased C by an average of 40 Mg·ha-1 in the top meter of soil. Grazed annual grasslands had similar soil C content as ungrazed grassland at all depths examined, although few details on grazing management were available. Soil C pools were weakly positively correlated with clay content and peaked at intermediated levels of aboveground net primary production. Our results suggest that annual grasslands have similar soil C storage capacity as temperate perennial grasslands and offer an important resource for mitigation of greenhouse gas emissions and climate change.
  • Authors:
    • Reicosky, D. C.
    • Baker, J. M.
    • Spokas, K. A.
  • Source: Plant and Soil
  • Volume: 333
  • Issue: 1
  • Year: 2010
  • Summary: Significant increases in root density, crop growth and productivity have been observed following soil additions of biochar, which is a solid product from the pyrolysis of biomass. In addition, alterations in the soil microbial dynamics have been observed following biochar amendments, with decreased carbon dioxide (CO2) respiration, suppression of methane (CH4) oxidation and reduction of nitrous oxide (N2O) production. However, there has not been a full elucidation of the mechanisms behind these effects. Here we show data on ethylene production that was observed from biochar and biochar-amended soil. Ethylene is an important plant hormone as well as an inhibitor for soil microbial processes. Our current hypothesis is that the ethylene is biochar derived, with a majority of biochars exhibiting ethylene production even without soil or microbial inoculums. There was increased ethylene production from non-sterile compared to sterile soil (215%), indicating a role of soil microbes in the observed ethylene production. Production varied with different biomass sources and production conditions. These observations provide a tantalizing insight into a potential mechanism behind the biochar effects observed, particularly in light of the important role ethylene plays in plant and microbial processes.