- Authors:
- Loynachan, T. E.
- Schultz, R. C.
- Parkin, T. B.
- Isenhart, T. M.
- Kim, D. G.
- Source: Journal of Environmental Quality
- Volume: 39
- Issue: 1
- Year: 2010
- Summary: While water quality functions of conservation buffers established adjacent to cropped Fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH4), these systems have the potential to serve as sinks of CH4 or may provide favorable conditions for CH4 production. This study quantifies CH4 flux from soils of riparian buffer systems comprised of three vegetation types and compares these fluxes with those of adjacent crop fields. We measured soil properties and diel and seasonal variations of CH4 flux in 7 to 17 yr-old re-established riparian forest buffers, warm-season and cool-season grass filters, and an adjacent crop field located in the Bear Creek watershed in central Iowa. Forest buffer and grass filter soils had significantly lower bulk density (P < 0.01); and higher pH (P < 0.01), total carbon (TC) (P < 0.01), and total nitrogen (TN) (P < 0.01) than crop field soils. There was no significant relationship between CH4 flux mid soil moisture or soil temperature among sites within the range of conditions observed. Cumulative CH4 flux was -0.80 kg CH4-C ha(-1) yr(-1) in the cropped field, -0.416 kg CH4-C ha(-1) yr(-1) within the forest buffers, and 0.04 kg CH4-C ha(-1) yr(-1) within grass filters, but difference among vegetation covers was not significant. Results Suggest that CH4 flux was not changed after establishment of perennial vegetation on cropped soils, despite significant changes in soil properties.
- Authors:
- Source: The New York Times
- Year: 2010
- Authors:
- Kutcher, H. R.
- Kryzanowski, L. M.
- Source: Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America
- Year: 2010
- Summary: Variability in soil and crop productivity in the Northern Great Plains is related to the pedogenic development of the parent glacial deposits, climate, native vegetation, and topography. Anthropogenic field management over the past 100 years has contributed to additional field variability through tillage erosion, crop-fallow rotations, fertilizer management, livestock manure management and crop residue management. Field topography influences microclimate and the hydrological conditions within a landscape by the redistribution of water and soil thermal dynamics. Water movement from upper to lower slope and depression areas either by runoff or through subsoil will result in the physical redistribution of surface soil (erosion), translocation of soluble nutrients or accumulation of salts. The end result of this redistribution is drier warmer upper slopes, and wetter cooler lower slopes and depressions. This influences soil biological, chemical and physical processes that impact crop growth. Often, the lowest crop yields are measured on the upper slopes and the highest yields on the lower slopes. Upper slopes are prone to erosion, shallow surface horizons, higher carbonate levels, lower organic matter levels and lower available water. The lower slopes have deposits of eroded surface material, deeper surface horizons, greater depth to carbonates, higher organic matter levels and higher available water. However, spatial relationships between productivity and landscape position are not always consistent. Higher productivity does not always occur in lower slopes because yield reductions can occur as a result of planting delays, poor crop germination, poor soil aeration, poor drainage, poor root development, foliar and root diseases, compaction, nutrient deficiencies, weed competition, limited root development, stunted crop development, acidic soil and salinity. Precision farming provides an opportunity to utilize technology to manage the topographical and spatial variability. Elevation and positioning data collected from global positioning systems can be managed by means of geographic information systems. Landform segmentation provides a fundamental basis for subdividing fields into landscape management units based on topography. Field sensors such as crop yield monitors along with remote sensing, aerial photography, soil sampling and weed populations provide additional data layers needed for site specific management. Variable rate controllers provide the technology for fertilizer, manure, lime and herbicide applications. Ultimately, economics will determine the adoption of precision farming technology and practices.
- Authors:
- Paré, D.
- Angers, D. A.
- Laganière, J.
- Source: Global Change Biology
- Volume: 16
- Issue: 1
- Year: 2010
- Summary: Deforestation usually results in significant losses of soil organic carbon (SOC). The rate and factors determining the recovery of this C pool with afforestation are still poorly understood. This paper provides a review of the influence of afforestation on SOC stocks based on a meta-analysis of 33 recent publications (totaling 120 sites and 189 observations), with the aim of determining the factors responsible for the restoration of SOC following afforestation. Based on a mixed linear model, the meta-analysis indicates that the main factors that contribute to restoring SOC stocks after afforestation are: previous land use, tree species planted, soil clay content, preplanting disturbance and, to a lesser extent, climatic zone. Specifically, this meta-analysis (1) indicates that the positive impact of afforestation on SOC stocks is more pronounced in cropland soils than in pastures or natural grasslands; (2) suggests that broadleaf tree species have a greater capacity to accumulate SOC than coniferous species; (3) underscores that afforestation using pine species does not result in a net loss of the whole soil-profile carbon stocks compared with initial values (agricultural soil) when the surface organic layer is included in the accounting; (4) demonstrates that clay-rich soils (>33%) have a greater capacity to accumulate SOC than soils with a lower clay content (<33%); (5) indicates that minimizing preplanting disturbances may increase the rate at which SOC stocks are replenished; and (6) suggests that afforestation carried out in the boreal climate zone results in small SOC losses compared with other climate zones, probably because trees grow more slowly under these conditions, although this does not rule out gains over time after the conversion. This study also highlights the importance of the methodological approach used when developing the sampling design, especially the inclusion of the organic layer in the accounting.
- Authors:
- Karlen, D. L.
- Wang, B.
- Horton, R.
- Davis, D. D.
- Fleming, P.
- Laird, D. A.
- Source: Geoderma
- Volume: 158
- Issue: 3-4
- Year: 2010
- Authors:
- Phillips, R. L.
- Kronberg, S. L.
- Gross, J. R.
- Liebig, M. A.
- Source: Journal of Environmental Quality
- Volume: 39
- Issue: 3
- Year: 2010
- Summary: The role of grassland ecosystems as net sinks or sources of greenhouse gases (GHGs) is limited by a paucity of information regarding management impacts on the flux of nitrous oxide (N2O) and methane (CH4). Furthermore, no long-term evaluation of net global warming potential (GWP) for grassland ecosystems in the northern Great Plains (NGP) of North America has been reported. Given this need, we sought to determine net GWP for three grazing management systems located within the NGP. Grazing management systems included two native vegetation pastures (moderately grazed pasture [MGP], heavily grazed pasture [HGP]) and a heavily grazed crested wheatgrass [Agropyron desertorum (Fisch. ex. Link) Schult.] pasture (CWP) near Mandan, ND. Factors evaluated for their contribution to GWP included (i) CO2 emissions associated with N fertilizer production and application, (ii) literature-derived estimates of CH4 production for enteric fermentation, (iii) change in soil organic carbon (SOC) over 44 yr using archived soil samples, and (iv) soil-atmosphere N2O and CH4 fluxes over 3 yr using static chamber methodology. Analysis of SOC indicated all pastures to be significant sinks for SOC, with sequestration rates ranging from 0.39 to 0.46 Mg C ha-1 yr-1. All pastures were minor sinks for CH4 (<2.0 kg CH4-C ha-1 yr-1). Greater N inputs within CWP contributed to annual N2O emission nearly threefold greater than HGP and MGP. Due to differences in stocking rate, CH4 production from enteric fermentation was nearly threefold less in MGP than CWP and HGP. When factors contributing to net GWP were summed, HGP and MGP were found to serve as net CO2equiv. sinks, while CWP was a net CO2equiv. source. Values for GWP and GHG intensity, however, indicated net reductions in GHG emissions can be most effectively achieved through moderate stocking rates on native vegetation in the NGP.
- Authors:
- Gross, J. R.
- Tanaka, D. L.
- Liebig, M. A.
- Source: Soil Science Society of America Journal
- Volume: 74
- Issue: 2
- Year: 2010
- Summary: The inclusion of cover crops during fallow (i.e., green fallow) may mitigate greenhouse gas (GHG) emissions from dryland cropping systems. An investigation was conducted to quantify the effects of chemical and green fallow on soil organic C (SOC) and CO2, CH4, and N2O flux within spring wheat (Triticum aestivum L.)-fallow (chemical fallow) and spring wheat-safflower (Carthamus tinctorius L.)-rye (Secale cereale L.) (green fallow) under no-till management in west-central North Dakota. Using static chamber methodology, flux measurements were made during 19 mo of the fallow period of each cropping system. Soil samples collected before initiation of flux measurements indicated no difference in SOC in the surface 10 cm between cropping systems. Additionally, differences in gas flux between cropping systems were few. Emission of CO2 was greater under green fallow than chemical fallow during spring thaw until the termination of rye (P = 0.0071). Uptake of atmospheric CH4 was the dominant exchange process during the evaluation period, and was significantly (P = 0.0124) greater under chemical fallow (-2.7 g CH4-C ha-1 d-1) than green fallow (-1.5 g CH4-C ha-1 d-1) following the termination of rye. Cumulative fluxes of CO2, CH4, and N2O did not differ between the chemical- and green-fallow phases during the 19-mo period (P = 0.1293, 0.2629, and 0.9979, respectively). The results from this evaluation suggest there was no net GHG benefit from incorporating a rye cover crop during the fallow phase of a dryland cropping system under no-till management.
- Authors:
- Zulovich, J. M.
- Massey, R. E.
- Lory, J. A.
- Source: Journal of Environmental Quality
- Volume: 39
- Issue: 3
- Year: 2010
- Summary: On 10 Apr. 2009, USEPA proposed and on 30 Oct. 2009 USEPA finalized reporting thresholds for a wide range of human-derived sources of greenhouse gas (GHG) as a first step in establishing emission limits in the United States. The only on-farm source category that required monitoring under the proposed and final rule was methane (CH4) and nitrous oxide (NO2) emissions from manure storage facilities. Our objective was to assess, through a literature review, the methodology used by USEPA to estimate current CH4 emissions from uncovered anaerobic lagoons and the proposed methodology for reporting those emissions under the proposed rule. A review of the performance of uncovered anaerobic lagoons indicates that they are more effective at degrading volatile solids (VS) than predicted using parameters provided by USEPA that had been developed for anaerobic digesters. We also documented errors in the USEPA - and International Panel on Climate Change - estimated methane conversion factors for uncovered anaerobic lagoons. We suggest estimating CH4 emissions from anaerobic lagoons based on VS degraded in the lagoon and B' (m3 CH4 generated kg^-1 VS destroyed). Our estimate of CH4 released from uncovered anaerobic lagoons indicated the regulatory operation size threshold could be at least 65% smaller than predicted by USEPA in the proposed rule. Our calculated estimate of CH4 emissions was substantially greater than the few estimates of CH4 loss based on direct measurements on uncovered anaerobic lagoons. More research is needed before it will be possible to provide definitive estimates of CH4 loss from uncovered anaerobic lagoons.
- Authors:
- Sun, O. J.
- Wang, E.
- Luo, Z.
- Source: Agriculture, Ecosystems & Environment
- Volume: 139
- Issue: 1-2
- Year: 2010
- Summary: Adopting no-tillage in agro-ecosystems has been widely recommended as a means of enhancing carbon (C) sequestration in soils. However, study results are inconsistent and varying from significant increase to significant decrease. It is unclear whether this variability is caused by environmental, or management factors or by sampling errors and analysis methodology. Using meta-analysis, we assessed the response of soil organic carbon (SOC) to conversion of management practice from conventional tillage (CT) to no-tillage (NT) based on global data from 69 paired-experiments, where soil sampling extended deeper than 40 cm. We found that cultivation of natural soils for more than 5 years, on average, resulted in soil C loss of more than 20 t ha-1, with no significant difference between CT and NT. Conversion from CT to NT changed distribution of C in the soil profile significantly, but did not increase the total SOC except in double cropping systems. After adopting NT, soil C increased by 3.15 +- 2.42 t ha-1 (mean ± 95% confidence interval) in the surface 10 cm of soil, but declined by 3.30 ± 1.61 t ha-1 in the 20-40 cm soil layer. Overall, adopting NT did not enhance soil total C stock down to 40 cm. Increased number of crop species in rotation resulted in less C accumulation in the surface soil and greater C loss in deeper layer. Increased crop frequency seemed to have the opposite effect and significantly increased soil C by 11% in the 0-60 cm soil. Neither mean annual temperature and mean annual rainfall nor nitrogen fertilization and duration of adopting NT affected the response of soil C stock to the adoption of NT. Our results highlight that the role of adopting NT in sequestrating C is greatly regulated by cropping systems. Increasing cropping frequency might be a more efficient strategy to sequester C in agro-ecosystems. More information on the effects of increasing crop species and frequency on soil C input and decomposition processes is needed to further our understanding on the potential ability of C sequestration in agricultural soils.
- Authors:
- MDEQ
- Midwestern GHG Reduction Accord
- Volume: 2010
- Year: 2010
- Summary: The Midwest Greenhouse Gas Reduction Accord (MGGRA) was a commitment by the governors of six Midwestern states and the premier of one Canadian province to reduce greenhouse gas (GHG) emissions through a regional cap-and-trade program and other complementary policy measures. The Accord was signed in November 2007 as a part of the Midwestern Governors Association Energy Security and Climate Change Summit. Though MGGRA has not been formally suspended, participating states are no longer pursuing it.