- Authors:
- Source: Oversigt over Landsfors<o>gene. Fors<o>g og unders<o>gelser i de land<o>konomiske foreninger, 2008
- Year: 2008
- Summary: Following a general account of the weather, land use, application of fertilizers and pest and disease control products, and an overview of the crops grown and their yields, most of the review is devoted to reports on individual crops. These were winter barley, winter rye, triticale, winter wheat, spring barley, oats, spring wheat, peas, grasses, spinach, rape, potatoes, sugarbeet and maize. Other sections cover alternative crops (for bioenergy production), manuring and fertilizers, cultural methods, organic methods, advisory work on plant breeding, tables of approved species and varieties of crop plants, lists of relevant organizations, a list of authors of the sections, and a comprehensive subject index.
- Authors:
- Basnyat, P.
- Huber, D.
- Fernandez, M. R.
- Zentner, R. P.
- Source: Soil & Tillage Research
- Volume: 100
- Issue: 1-2
- Year: 2008
- Summary: Fusarium head blight (FHB) is an important disease which has been causing damage to wheat and barley crops in western Canada. Because crop residues are an important source of inoculum, it is important to know the ability of Fusarium spp. to colonize and survive in different residue types, and how their populations might be affected by agronomic practices. Sampling of residue types on producers' fields for quantification of Fusarium and other fungi was conducted in 2000-2001 in eastern Saskatchewan. Fusarium spp. were isolated from most fields, whereas their mean percentage isolation (MPI) was over 50% for cereal and pulse residues, and under 30% for oilseed residues. The most common Fusarium, F. avenaceum, had a higher MPI in pulse and flax (45-48%) than in cereal or canola (10-22%) residues. This was followed by F. equiseti, F. acuminatum, F. graminearum, F. culmorum and F. poae which were isolated from all, or most, residue types. Factors affecting Fusarium abundance in residues included the current crop, cropping history, and tillage system. In cereal residues, the MPI of F. avenaceum was higher when the current crop was another cereal (24%) versus a noncereal (4-8%). When the current crop was another cereal, the lowest MPI of F. avenaceum and F. culmorum occurred when the field had been in summerfallow (SF) two years previous (F. avenaceum: 17% for SF, 28% for a crop; F. culmorum: 1% for SF, 4% for a crop); in contrast, F. equiseti and Cochliobolus sativus were most common in residues of cereal crops preceded by SF (F. equiseti: 16% for SF, 10% for a crop; C. sativus: 22% for SF, 13% for a crop). The MPI of F graminearum was higher when the crop two years previous was an oilseed (7%) versus a cereal (4%). In regards to tillage effects, when the current crop was a cereal, the MPI of F. avenaceum was higher under minimum (MT) and zero tillage (ZT) (22-37%) than conventional tillage (CT) (15%), that of F. graminearum was lowest under ZT (3% for ZT, 7-11% for CT-MT), whereas that of C. sativus was highest under CT (27% for CT, 6-11% for MT-ZT). Under ZT, previous glyphosate applications were correlated positively with F. avenaceum and negatively with F. equiseti and C. sativus. These observations generally agreed with results from previous FHB and root rot studies of wheat and barley in the same region. Percentage isolation of F avenaceum from noncereal and of F. graminearum from cereal residues were positively correlated with FHB severity and percentage Fusarium-damaged kernels of barley and wheat caused by the same fungi. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
- Authors:
- Barbottin, A.
- Colbach, N.
- Gruber, S.
- Pekrun, C.
- Source: CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources
- Volume: 3
- Issue: 015
- Year: 2008
- Summary: Data about gene escape by seeds and volunteers were compiled for the first time in one study for several crops, i.e. wheat ( Triticum aestivum), sugar beet ( Beta vulgaris), oilseed rape/canola ( Brassica napus) and maize ( Zea mays). These species represent important genetically modified (GM) crops with herbicide tolerance (HT) or insect resistance (Bt), show different levels of autogamy and allogamy and are grown in different climatic zones of the world. Post-harvest measures and strategies were identified for minimizing gene escape from these crops. All species were found to cause problems in terms of gene escape by seed and volunteers though there are important differences between species and climatic zones. Post-harvest tillage was identified as a key factor for reducing the soil seed bank and volunteers. Timing and intensity of tillage has to be specifically adapted to the dormancy characteristics of each species. Furthermore, there is a close interaction between gene escape and the cropping system. Rotations should avoid the same crop or other critical crops in temporal vicinity to the GM crop in order to keep volunteer populations below a critical density. In no-till systems with use of HT varieties, HT volunteers can reduce the efficiency of the whole system if additional herbicides have to be applied. Seed impurities and admixtures during seed production are another major source of gene escape. Since seed lots of certified growers present less adventitious presence of other varieties, these should be preferred to farm-saved seeds. Education of farmers, cleaning of equipment, control measures and separate production and supply chains are additionally important to minimize gene escape.
- Authors:
- Zhou, X. L.
- Liao, M. L.
- Feng, W. Q.
- Qin, Y. S.
- Tu,, S. H.
- Sun, X. F.
- Source: Southwest China Journal of Agricultural Sciences
- Volume: 21
- Issue: 1
- Year: 2008
- Summary: There were considerable differences in amounts of nutrient uptake by the rice cultivar Chuanxiangyou 9838 in different growing periods under no till rape-rice rotation in Sichuan. The rice cultivar absorbed the highest quantity of N in the elongation stage and followed by its maturity and tillering stages. Uptake of P kept a steady increase from seedling stage to its maturity, and the maximal uptake of K occurred during the elongation to earing stages. Based on the nutrient uptake characteristics of the rice cultivar Chuanxiangyou 9838, good nutrient management practices were therefore developed. Application of N should be conducted in early stages and no latter than its elongation. If the soil N supplying ability was not adequate after elongation, an extra N application should be considered to guarantee high yield and quality of the rice. Basal application of P was considered as a proper practice. When the soil as too sandy with low nutrient holding capacity, or too acidic or alkaline with strong ability to fix up P and lose bioavailability, it was better to split P fertilizer to meet requirement at its latter stages. K fertilizers could be applied in early to middle growing stages. If the soil was sandy, it should consider an extra K application after earing stage. It was found that the proper N application rate for the rice cultivar Chuanxiangyou 9838 under no till rape-rice rotation was approximately 165 kg/hm 2 N with a goal of 11 tonnes of rice yield.
- Authors:
- Blackshaw, R. E.
- Johnson, E. N.
- Beckie, H. J.
- Gan, Y.
- Source: Canadian Journal of Plant Science
- Volume: 88
- Issue: 2
- Year: 2008
- Summary: Competitive crops or cultivars can be an important component of integrated weed management systems. A study was conducted from 2003 to 2006 at four sites across semiarid prairie ecoregions in Saskatchewan and Alberta to investigate the productivity and quality of canola (Brassica napus L.) and mustard cultivars under weed competition. Four open-pollinated canola cultivars, four hybrid canola cultivars, two canola-quality mustard and two oriental mustard cultivars [Brassica juncea (L.) Czern. & Coss.], and two yellow mustard (Sinapis alba L.) cultivars were grown under weedy and weed-free conditions. When combined across site-years, crop aboveground biomass at maturity and seed yield were reduced by weed interference, except for yellow and oriental mustard. However, seed oil and protein content of cultivars were not affected by weed competition. Among crop types, yellow and oriental mustard were best able to maintain biomass and seed yield under weed interference, followed in decreasing order of competitiveness by hybrid and open-pollinated canola, then canola-quality mustard.
- Authors:
- Claupein, W.
- Lewandowski, I.
- Boehmel, C.
- Source: Agricultural Systems
- Volume: 96
- Issue: 1/3
- Year: 2008
- Summary: Given the political targets, it can be expected that in Europe, energy production from agricultural land will increase and that improved systems for its production are needed. Therefore, a four year field trial was conducted on one site in south-western Germany to compare and evaluate the biomass and energy yield performance of important energy crops. Six energy cropping systems with the potential to produce biomass for first and second-generation biofuels were selected. The systems were short rotation willow coppice, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale. The two crop rotation systems were managed in either conventional tillage or no-till soil cultivation systems. The second test parameter was three different crop-specific nitrogen application levels. The performance of the energy cropping systems was evaluated by measuring the biomass yields and calculating the energy yields, as well as through an energy balance and nitrogen budget. Results show the superiority of the annual energy crop maize in dry matter yield (DMY) and primary net energy yield (PNEY=difference between the primary energy yield (DMY * lower heating value) and the energy consumption) performance with peak values at the highest N-application level of 19.1 t DM ha -1 a -1 and 350 GJ ha -1 a -1, respectively. The highest yielding perennial crop was miscanthus with 18.1 t ha -1 a -1 DMY and a PNEY of 277 GJ ha -1 a -1, followed by willow with 15.2 t ha -1 a -1 and 258 GJ ha -1 a -1, at the highest N-application level. Switchgrass showed the lowest yields of the perennial crops with 14.1 t ha -1 a -1 DMY at the highest N-application level. The yields of the two crop rotation systems did not differ significantly and amounted to 14.6 t ha -1 a -1 DMY of both grain and straw at the highest N-application level. Willow showed the significantly highest energy use efficiency (output (PNEY):input (energy consumption)-ratio) with 99 GJ energy output per GJ fossil energy input at the lowest N-application level (no fertilizer). The two crop rotation systems had the lowest energy use efficiency with 20 GJ GJ -1 for the production of total aboveground biomass. Energy maize gave the best energy yield performance but at a relatively high energy input, whereas willow and miscanthus as perennial energy crops combine high yields with low inputs. Results suggest that no-till systems had no negative impact on biomass and energy yields, but that there was also no positive impact on energy saving.
- Authors:
- Source: Oversigt over Landsfors<o>gene 2007. Fors<o>g og unders<o>gelser i de land<o>konomiske foreninger
- Year: 2007
- Summary: Work conducted by Landsforsgene, a collaborative body that undertakes field trials and experiments on crop plants in Denmark, is reported. A general introduction gives details of conditions in the 2007 growing season (warmer in spring and wetter than usual in summer), and their effects on factors such as the efficacy of fertilizer application and the harvest. The aim is to give growers a basis for future planning, taking account of environmental conditions and profitable plant production. Most of the report is devoted to separate sections covering individual crops: winter barley, winter rye, triticale, winter wheat, spring barley, oats, spring wheat, field peas, grass seeds, rape, hemp, spinach, strawberries, potatoes, sugar beet, pasture plants (grasses and clovers), and maize. Within these sections details of varieties, fertilizers, weeds, and diseases are provided in the text and in numerous tables and photographs. Other small sections deal with topics including organic production, fertilizers, plant breeding, statistical methods, policies, and names and addresses of suppliers. The report concludes with a list of the 23 authors of sections, and a comprehensive index.
- Authors:
- May, W. E.
- Brandt, S. A.
- Lafond, G. P.
- Holzapfel, C. B.
- Johnston, A. M.
- Source: Canadian Journal of Plant Science
- Volume: 87
- Issue: 2
- Year: 2007
- Summary: Delaying nitrogen (N) applications into the growing season as a risk management tool is a concept that has received considerable attention in recent years. A 3-yr field study with spring wheat ( Triticum aestivum L.) and canola ( Brassica napus L.) was conducted at two Saskatchewan locations, Indian Head and Scott. The effects of postponing N applications for up to 30 d after seeding and several application methods were evaluated against mid-row banded urea at seeding. Liquid urea ammonium-nitrate (UAN) was applied at four separate times relative to seeding, either as an in-soil coulter band or a surface band. The surface band applications were applied either with or without the addition of 5% ammonium thiosulphate (ATS), a potential urease inhibitor. The dependent variables considered included plant density and grain yield for both crops, and grain protein in wheat. The only effect on plant density occurred in canola, where the post-seeding coulter applications slightly reduced stands compared with the other treatments. Postponing N fertilization for up to 30 d after seeding compared with N fertilization at seeding did not affect the yield of canola or protein in spring wheat, but reduced the yield of spring wheat at Indian Head in 2003, which was a very dry growing season. The coulter applications only showed a slight advantage over the surface band applications. For the surface band applications, the addition of 5% ATS did not provide a noticeable advantage over UAN alone. Canola appeared to be less sensitive to post-seeding applications than spring wheat. Deferring the entire amount of fertilizer N into the growing season appears to be a viable option but it is not without risk, especially when dry conditions are encountered.
- Authors:
- Lares, M. T.
- Liebig, M. A.
- Tanaka, D. L.
- Merrill, S. D.
- Krupinsky, J. M.
- Hanson, J. D.
- Source: Agronomy Journal
- Volume: 99
- Issue: 4
- Year: 2007
- Summary: Field research was conducted to determine the influence of crop and crop sequencing on crop residue coverage of soil with 10 crops [buckwheat (Fagopyrum esculentum Moench), canola (Brassica napus L.), chickpea (Cicer arietinum L.), corn (Zea mays L.), dry pea (Pisum sativum L.), grain sorghum [Sorghum bicolor (L.) Moench], lentil (Lens culinaris Medik.), oil seed sunflower (Helianthus annuus L.), proso millet (Panicum miliaceum L.), and hard red spring wheat (Triticum aestivum L.)]. Crop residue production was obtained. Crop residue coverage of the soil surface was measured with a transect technique at the time of seeding spring wheat. Crop residue coverage varied and was more clearly associated with the second-year crop than with the first-year crop of a 2-yr crop sequence. Crop sequences composed of spring wheat, proso millet, and grain sorghum had higher crop residue coverage compared with sequences composed of the other crops. When these three crops and three crops that provide lower crop residue coverage of soil the subsequent year (lentil, chickpea, and sunflower) were analyzed as a subset to compare various sequences of crops providing a range of residue coverage, for example, lower (first yr)/lower (second yr), the surface residue coverage ranged from 65% for the lower/lower combination to 93% for the higher/higher combination in 2004 and from 56 to 94% in 2005, respectively. A producer operating on more fragile soil and concerned about reducing soil erosion hazards would be advised to grow crops that provide higher residue coverage in the year before crops that provide lower residue coverage.