• Authors:
    • Schumacher, K. D.
    • Striewe, L.
  • Source: Agrarwirtschaft
  • Volume: 56
  • Issue: 1
  • Year: 2007
  • Summary: The international cereal production is expected to decrease by 1% in 2006/07, the second year in a row. Wheat production is expected 589 million tonnes, 5% less the previous year and the lowest harvest for the last three years. Droughts in Australia, the USA and Canada are one reason, however China, Ukraine and other Black Sea neighbouring countries reported higher production in 2006/07. In the USA 110 ethanol production units were established, most are maize (corn) based others on sorghum. A doubling of the capacity in 2007 alone is projected. The EU cereal harvest was also reduced with droughts in Spain and Portugal. Prices are predicted to rise further, the export licences established in the Ukraine have driven European prices up and Ukrainian producers suffered because of price drops within their country, due to oversupply. The global oilseed production can currently match demand, however, it is expected that demand will grow faster than supply. The global oilseed production in 2006/07 of 395 million tonnes consisted mainly of soyabeans (227), oilseed rape (47), cotton (44), peanuts (32) and sunflowers (31 million tonnes). The soyabean area in Brazil is decreasing from 23 million ha to 21 million in 2006/07, however Argentina has increased the area by 0.5 to 15.7 million ha. Globally demand is again rising faster than supply and inelastic demand caused by government subsidies for bio-fuel will lead to less cereals being available for food consumption.
  • Authors:
    • Schondelmaier, J.
    • Foerster, J.
    • Weyen, J.
    • Kiviharju, E.
    • Tenhola-Roininen, T.
    • Tanhuanpaeae, P.
    • Manninen, O.
    • Hagberg, P.
    • Dayteg, C.
    • Tuvesson, S.
    • Lafferty, J.
    • Marn, M.
    • Fleck, A.
  • Source: Euphytica
  • Volume: 158
  • Issue: 3
  • Year: 2007
  • Summary: The breeding companies and laboratories involved in this article cover a wide range of crops grown in the temperate climate zone: small grain cereals, oilseed crops, forage crops, turf, vegetables and potato. Speed and efficiency are becoming increasingly important in variety breeding and doubled haploids (DH) and genetic markers are important biotechnological tools to accelerate materials to market. Collaborative research between universities, research institutions and breeding companies has resulted in the routine use of DH technology and molecular markers in practical breeding of barley, wheat and rapeseed. DH populations have been established not only for barley, wheat and rapeseed, but for rye, oat and triticale, where DH technology is less developed. A driver here is the value of the crop e.g. although wheat is less responsive to DH production the value of the end product makes the effort worthwhile. Simple and rapid DNA extraction methods used in high-throughput marker assisted selection (MAS) systems are essential for routine use of markers. MAS is used both to monitor the presence of genes of interest and also to monitor the genetic background. DH technology in forage, turf and vegetables is still in progress and the practical use of markers in all crops is limited by access to trait linked markers. Collaboration and technology transfer with universities, research institutions and breeding companies is essential for the improvement of both DH protocols in recalcitrant crops and marker technology in all crops.
  • Authors:
    • Awasthi, V. B.
  • Source: Agricultural insect pests and their control
  • Year: 2007
  • Summary: This book, which contains 24 chapters, covers the morphology (integument, head, thorax and abdomen), physiology (digestive system, circulatory system, excretory system, respiratory system, nervous system, photoreceptors, endocrine system, and reproductive system), development and metamorphosis, and control (through physical, mechanical, biological, chemical and integrated management strategies, and through quarantine and the use of pheromones) of agricultural insect pests. An overview of the life history and control of pests of cotton and fibre crops, sugarcane, oilseed crops, pulse crops, sorghum, cereals, fruits and fruit trees, vegetables, plantation crops, soyabean, ornamental plants, and stored grains is provided. This book is intended for students of agricultural entomology in India, but will also be useful for those who are preparing for examinations for admission in government agencies.
  • Authors:
    • Duarte, G.
    • Diaz-Zorita, M.
    • Barraco, M.
  • Source: Wheat Production in Stressed Environments Developments in Plant Breeding
  • Volume: 12
  • Year: 2007
  • Summary: Wheat ( Triticum aestivum L.) grain yields under no-till production systems have been shown to be reduced in the presence of maize ( Zea mays L.) residues. It has been suggested that sowing a greater density of wheat seeds or removing maize residues from the planting rows contributes to avoid this problem. However, the causal factors and the mechanism that produce reductions in wheat yields are no clearly defined. Our objective was to determine the effects of different volumes of maize or soybean [ Glycine max (L.) Merrill] residues on no-tillage wheat establishment and production under field conditions on a Typic Hapludoll from the Pampas region of Argentina. The study was performed during the 2002, the 2003 and the 2004 growing seasons. Two treatments [residue volume (0, 4, 8 and 16 Mg ha -1) and crop residue (maize and soybean)] were imposed after sowing wheat at low and high plant densities, (301 and 396 seed ha -1, respectively). The previous crop was sunflower ( Helianthus annus L.) and the residues were applied on the soil surface immediately after planting and fertilizing with 125 kg ha -1 of Nitrogen. Independently of the quality of the residues and the sowing density, wheat plants m -2, spikes m -2 and grain yields ha -1 decreased when residue volume increased. In general, lower soil temperatures values and variability were observed when increasing the volume of residues. The presence of large amounts of maize or soybean residues causes the reduction in no-tillage wheat productivity (plant stand and numbers of spikes). However, only maize residues causes significant reductions in grain yields, independently of the seeding rate. The absence of significant differences in soil temperature measurements between residues allows us to think that the effects on surface soil temperature are not the main factor explaining the reduction in wheat grain yields in the presence of maize residues. Increasing the seeding rate can contribute to ameliorate the grain yield reduction in the presence of maize residues but further research is required for explaining the reasons for the behavior of the crop.
  • Authors:
    • Paulitz, T. C.
  • Source: European Journal of Plant Pathology
  • Volume: 115
  • Issue: 3
  • Year: 2006
  • Summary: Direct-seeding or no-till is defined as planting directly into residue of the previous crop without tillage that mixes or stirs soil prior to planting. No-till reduces soil erosion, improves soil structure and organic matter, and reduces fuel inputs. No-till is widely used in cereal production in Australia, Canada, Argentina, and Brazil, but has not been widely adopted in Europe and the Pacific Northwest of the U.S. One of the limitations is that root diseases may increase with a reduction in tillage. This paper discusses the importance and management of take-all, Fusarium dryland foot rot, Rhizoctonia bare patch and root rot, and Pythium root rot in dryland cereal production systems, and how they are influenced by changes in tillage practices. To address this challenge, specifically with Rhizoctonia and Pythium, our research group has (1) developed classical and molecular techniques to detect and quantify Rhizoctonia and Pythium spp. from the soil to assess disease risk; (2) studied the disease dynamics of root disease during the transition from conventional to no-till; (3) developed greenhouse methods to screen germplasm for tolerance or resistance to Pythium and Rhizoctonia, and (4) using GPS and geostatistics, has examined the spatial distribution of R. solani and R. oryzae at a field scale up to 36 ha, across a number of crop rotations and years. By a combination of ecological, epidemiological, field, and laboratory studies, we hope to provide growers with a set of disease management tools to permit the economical and sustainable production of dryland cereals without degradation of the soil resource.
  • Authors:
    • Suryadi, M.
    • Nagai, N.
    • Siregar, M.
  • Source: CAPSA Working Paper
  • Issue: 98
  • Year: 2006
  • Summary: This report is the outcome of the second phase of the AGRIDIV project in Indonesia. The goal of this second phase study is to examine the performance of farming, marketing and processing of CGPRT crops at two dryland sites that have different cropping patterns. The two selected sites were Siswa Bangun and Restu Baru village. The results would by no means represent a national average. Hence, the description of farming, marketing and processing of those crops given here forms a source of in-depth quantitative and qualitative information that might have wider validity. Findings relate to maize and cassava commodity systems. Policy recommendations are presented.
  • Authors:
    • Zentner, R.
    • Campbell, C. A.
    • Zhong, Z.
    • Lemke, R. L.
  • Source: Agronomy Journal
  • Volume: 99
  • Issue: 6
  • Year: 2006
  • Summary: The atmospheric buildup of greenhouse gases (GHGs) is a serious environmental issue. Globally, agricultural activities are an important source of anthropogenic GHGs, contributing [~]20% of the annual atmospheric increase. Management choices largely determine if agricultural soils will be a source, a sink, or will be neutral with respect to GHG net flux. The proportion of agricultural land that is seeded to pulse crops in the Northern Great Plains (NGP) region of North America has been increasing rapidly over the past decade. Introducing pulses into cereal-based cropping systems could influence the net GHG balance of those systems because pulse crops are thought to stimulate soil-emitted N2O, have different pesticide and fertilizer requirements, and the quality and quantity of their residues vary substantially compared with cereal crops. In this paper we briefly review the available literature, and discuss the potential impact of pulse crops on the net flux of CO2, N2O, and CH4 from soils, and the CO2 emissions associated with energy inputs for cropping systems in the NGP. We also calculate net GHG balances for two example sites. Estimating the final GHG outcome of introducing pulses into cereal-based cropping systems is still uncertain, but current information suggests that replacing a cereal with a pulse crop will likely result in no change or a small but positive net GHG benefit (lower emissions to the atmosphere) for crop rotations in the NGP region.
  • Authors:
    • FAO
  • Year: 2006
  • Summary: from intro: This is an updated version, with extension of projections to 2050, of two of the key chapters (Chapters 2 and 3) of the study World Agriculture: Towards 2015/30 completed in 2002 and published in 2003 (Bruinsma, 2003). Chapter 2 presents prospective developments in food demand and consumption and possible implications for nutrition and undernourishment. Chapter 3 deals with production, consumption and trade, in terms of the main commodity sectors and aggregate agriculture.
  • Authors:
    • Nielsen, D. C.
    • Lyon, D. J.
    • Felter, D. G.
  • Source: Agronomy Journal
  • Volume: 98
  • Issue: 6
  • Year: 2006
  • Summary: Substituting a short-season, spring-planted crop for summer fallow when soil water is sufficient at planting might reduce soil degradation without significantly increasing the risk of crop failure. The objectives of this study were to determine the relationship of crop grain or forage yield to plant available soil water at planting. The study was conducted on silt loam soils in 2004 and 2005 at Sidney, NE, and Akron, CO. A range of soil water levels was established with supplemental irrigation before planting. Four crops [spring triticale (X Triticosecale rimpaui Wittm.) for forage, dry pea (Pisum sativum L.) for grain, proso millet (Panicum miliaceum L.) for grain, and foxtail millet (Setaria italica L. Beauv.) for forage] were no-till seeded into corn (Zea mays L.) residue in a split-plot design with four replications per location. Triticale forage yield increased by 229 kg ha-1 for each centimeter of soil water available at planting in 2004. Foxtail millet forage yield and grain yield of proso millet increased by 399 kg ha-1 cm-1 and 148 kg ha-1 cm-1, respectively, at Akron in 2004. Spring triticale, foxtail millet, and proso millet did not respond to soil water at planting in 2005, when precipitation was above the long-term average. Dry pea did not demonstrate a consistent positive response to soil water availability at planting. Soil water at planting may be a useful indicator of potential yield for selected short-season spring-planted summer crops, particularly when crop production is limited by growing season precipitation.
  • Authors:
    • Spiridon, C.
    • Rotarescu, M.
    • Raranciuc, S.
    • Guran, M.
    • Popov, C.
    • Vasilescu, S.
    • Gogu, F.
  • Source: Probleme de Protectia Plantelor
  • Volume: 34
  • Issue: 1/2
  • Year: 2006
  • Summary: This paper summarizes the harmful pests and pathogens infecting cereals and legumes (grown for grain, industrial purposes and fodder production) in Romania in 2005. The soil and seed pathogens include: Tilletia spp. and Fusarium spp. in wheat; Ustilago nuda [ U. segetum var. nuda] and Pyrenophora graminea in barley; Pythium spp. and Fusarium spp. in maize; Sclerotinia sclerotiorum, Botrytis cinerea, Plasmopara helianthi [ Plasmopara halstedii] and Orobanche cumana in sunflower; and Fusarium spp. and Pythium spp. in pea, bean and soyabean. Foliar and ear diseases include: Erysiphe spp., Septoria spp., Pyrenophora graminea, Puccinia spp. and Fusarium spp. in wheat and barley; U. maydis [ U. zeae], Helminthosporium turcicum [ Setosphaeria turcica], Fusarium spp. and Nigrospora oryzae [ Khuskia oryzae] in maize; Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria spp. and Phomopsis spp. in sunflower; and Erysiphe spp. and Septoria spp. in rape. Soil pests included: Zabrus tenebrioides and Agriotes spp. in spiked cereals; Tanymecus dilaticollis and Agriotes spp. in maize and sunflower; Delia platura in beans; Phyllotreta atra in rape and mustard; Aphthona euphorbiae in linseed; and Sitona spp. and Agriotes spp. in lucerne and clover. Pests that attack aerial parts and seeds include: Eurygaster integriceps, Lema melanopa [ Oulema melanopus] and Anisoplia spp. in wheat, barley and oats; Ostrinia nubilalis and Diabrotica virgifera virgifera in maize; Thrips linarius in linseed; Athalia rosae, Meligethes aeneus and Brevicoryne brassicae in rape and mustard; Hypera variabilis [ H. postica], Semiothisa clathrata, Bruchophagus roddi and Subcoccinella vigintiquattuorpunctata in lucerne and clover.