- Authors:
- Paustian, K.
- Ogle, S.
- Lee, J.
- De Gryze, S.
- Six, J.
- Source: Agriculture, Ecosystems & Environment
- Volume: 144
- Issue: 1
- Year: 2011
- Summary: We predicted changes in yields and direct net soil greenhouse gas (GHG) fluxes from converting conventional to alternative management practices across one of the world's most productive agricultural regions, the Central Valley of California, using the DAYCENT model. Alternative practices included conservation tillage, winter cover cropping, manure application, a 25% reduction in N fertilizer input and combinations of these. Alternative practices were evaluated for all unique combinations of crop rotation, climate, and soil types for the period 1997-2006. The crops included were alfalfa, corn, cotton, melon, safflower, sunflower, tomato, and wheat. Our predictions indicate that, adopting alternative management practices would decrease yields up to 5%. Changes in modeled SOC and net soil GHG fluxes corresponded to values reported in the literature. Average potential reductions of net soil GHG fluxes with alternative practices ranged from -0.7 to -3.3 Mg CO(2)-eq ha(-1) yr(-1) in the Sacramento Valley and -0.5 to -2.5 Mg CO(2)-eq ha(-1) yr(-1) for the San Joaquin Valley. While adopting a single alternative practice led to modest net soil GHG flux reductions (on average -1 Mg CO(2)-eq ha(-1) yr(-1)), combining two or more of these practices led to greater decreases in net soil GHG fluxes of up to -3 Mg CO(2)-eq ha(-1) yr(-1). At the regional scale, the combination of winter cover cropping with manure application was particularly efficient in reducing GHG emissions. However, GHG mitigation potentials were mostly non-permanent because 60-80% of the decreases in net soil GHG fluxes were attributed to increases in SOC, except for the reduced fertilizer input practice, where reductions were mainly attributed to decreased N(2)O emissions. In conclusion, there are long-term GHG mitigation potentials within agriculture, but spatial and temporal aggregation will be necessary to reduce uncertainties around GHG emission reductions and the delivery risk of the associated C credits. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Burr, C.
- Thorburn, J.
- Irmak, S.
- Yang, H. S.
- Grassini, P.
- Cassman, K. G.
- Source: Field Crops Research
- Volume: 120
- Issue: 1
- Year: 2011
- Summary: Appropriate benchmarks for water productivity (WP), defined here as the amount of grain yield produced per unit of water supply, are needed to help identify and diagnose inefficiencies in crop production and water management in irrigated systems. Such analysis is lacking for maize in the Western U.S. Corn Belt where irrigated production represents 58% of total maize output. The objective of this paper was to quantify WP and identify opportunities to increase it in irrigated maize systems of central Nebraska. In the present study, a benchmark for maize WP was (i) developed from relationships between simulated yield and seasonal water supply (stored soil water and sowing-to-maturity rainfall plus irrigation) documented in a previous study; (ii) validated against actual data from crops grown with good management over a wide range of environments and water supply regimes ( n=123); and (iii) used to evaluate WP of farmer's fields in central Nebraska using a 3-y database (2005-2007) that included field-specific values for yield and applied irrigation ( n=777). The database was also used to quantify applied irrigation, irrigation water-use efficiency (IWUE; amount of yield produced per unit of applied irrigation), and the impact of agronomic practices on both parameters. Opportunities to improve irrigation management were evaluated using a maize simulation model in combination with actual weather records and detailed data on soil properties and crop management collected from a subset of fields ( n=123). The linear function derived from the relationship between simulated grain yield and seasonal water supply, namely the mean WP function (slope=19.3 kg ha -1 mm -1; x-intercept=100 mm), proved to be a robust benchmark for maize WP when compared with actual yield and water supply data. Average farmer's WP in central Nebraska was ~73% of the WP derived from the slope of the mean WP function. A substantial number of fields (55% of total) had water supply in excess of that required to achieve yield potential (900 mm). Pivot irrigation (instead of surface irrigation) and conservation tillage in fields under soybean-maize rotation had the greatest IWUE and yield. Applied irrigation was 41 and 20% less under pivot and conservation tillage than under surface irrigation and conventional tillage, respectively. Simulation analysis showed that up to 32% of the annual water volume allocated to irrigated maize in the region could be saved with little yield penalty, by switching current surface systems to pivot, improving irrigation schedules to be more synchronous with crop water requirements and, as a fine-tune option, adopting limited irrigation.
- Authors:
- Trethowan, R.
- Moeller, C.
- Carrillo-Garcia, A.
- Verhulst, N.
- Sayre, K. D.
- Govaerts, B.
- Source: Plant and Soil
- Volume: 340
- Issue: 1/2
- Year: 2011
- Summary: A field experiment was conducted under furrow irrigation on a Vertisol in arid northwestern Mexico, to evaluate sustainable production alternatives for irrigated wheat systems. Treatments included: tillage (conventionally tilled raised beds where new beds are formed after disc ploughing before planting [CTB] and permanent raised beds [PB]) and irrigation regimes (full and reduced). Physical and chemical soil quality was compared among treatments. PB improved soil structure and direct infiltration, increased topsoil K concentrations (0-5 cm; 1.6 cmol kg -1 in PB vs. 1.0-1.1 cmol kg -1 in CTB) and reduced Na concentrations (0-5 cm; 1.3-1.4 cmol kg -1 in PB vs. 1.9-2.2 cmol kg -1 in CTB) compared to CTB. Crop growth dynamics were studied throughout the season with an optical handheld NDVI sensor. Crop growth was initially slower in PB compared to CTB, but this was compensated by increased crop growth in the later stages of the crop cycle which influenced final yield, especially under reduced irrigation. These results were reflected in the final grain yield: in the third year after conversion to PB, no difference in grain yield was found between tillage systems under full irrigation. However, under reduced irrigation the improved soil quality with PB resulted in a 19% and 26% increment in bread and durum wheat grain yields, respectively. As projected climatic scenarios forecast higher evapotranspiration, less reliable rainfall and increased drought, our results indicate that PB could contribute to maintaining and increasing wheat yields in a sustainable way.
- Authors:
- Source: Soil & Tillage Research
- Volume: 114
- Issue: 2
- Year: 2011
- Summary: Transgenic Bt cotton hybrids, in India, now constitute more than 90% of the cotton area. Conservation tillage systems such as reduced tillage (RT) improve soil health and crop productivity. Field experiments were conducted to study the response of Bt cotton hybrids to the tillage methods in a split plot design for three years (2005-2006 to 2007-2008) with tillage practices as main plots (conventional tillage {CT}, RT with two inter-row cultivations {RT(1)} and RT with no inter-row cultivation {RT(2)}). In the sub-plot, in situ green manure (GM) was included along with 100 (GM + N(100)), 80 (GM + N(80)) and 60 kg N ha(-1) (GM + N(60)) and were compared to N alone (N(100)). Growth, yield and fibre quality of Bt transgenic cotton hybrid (RCH-2 Bt) were monitored during the study. In all seasons, weed density and biomass were significantly lower in the RT treatments than in the CT treatments. Taller plants with more main stem nodes were produced on the RT plots (63.6-75.8 cm) than on the CT plots (58.1-70.2 cm). Thus, plants of RT treatment retained more bolls (60.8-62.0 m(-2)) than those of the CT treatment (52.4 m(-2)). Averaged over seasons, RT treatment had seed cotton yield (1717-1740 kg ha(-1)) significantly higher than the CT treatment (1489 kg ha(-1)). The treatments N(100), GM + N(100) and GM + N(80) (1687-1734 kg ha(-1)) did not differ and were significantly better than the GM + N(60) (1303 kg ha(-1)). Tillage x GM interaction was significant in two of three years and data combined over years. The RT plots with GM had significantly greater yield than the CT plots. Compared to the CT treatment, the RT plots had significantly greater proportion of water stable aggregates (48.6% vs. 54.4-56.0%) and mean weight diameter (0.47 mm vs. 0.49-0.51 mm). The GM plots had significantly higher WSA and MWD than those without. Further, soil moisture content was greater in the GM mulched plots up to 0.60 m depth compared to without GM treatment (CT + N(100)). Favourable soil physical properties may have contributed to improved seed cotton yield in the RT treatments with GM than in the CT treatment. Fibre quality was not affected by either the tillage systems or GM. This study indicates that Bt transgenic cotton can be grown under RT systems with an in situ legume GM. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Chenglin, M.
- Chunsheng, L.
- Honglei, J.
- Lichun, W.
- Hongjie, T.
- Source: Soil & Tillage Research
- Volume: 107
- Issue: 1
- Year: 2010
- Summary: The stalk-stubble breaking and mulching process is a core technique for some conservation tillage system. Over the past 10 years, this technique has been widely adopted in the dry farming area of northern China. On the basis of analyzing the existing problems in stalk-breaking and stubble-breaking machines, we have developed a combined stalk-stubble breaking and mulching machine with two frames fixed together, the stalk and stubble-breaking blade rotors were mounted respectively on the frames. The machine can be used to break the maize ( Zea mays L.) stalk and stubble and bury about one-third of the broken stalk and stubble in the soil, preventing them being blown away by wind. This paper describes the structural features of the machine, the design of main working parts, determination of the parameters of the central position of the two blade rotors, and presents the performance test results. The tests showed that the machine had a stalk-breaking rate of 89% and the vegetation coverage rate reached 67.9%, which meets the agro-technical requirements in the dry farming area of northern China.
- Authors:
- Mulvaney, M. J.
- Wood, C. W.
- Kemble, J. M.
- Balkcom, K. S.
- Shannon, D. A.
- Source: Agronomy Journal
- Volume: 102
- Issue: 5
- Year: 2010
- Summary: A combination of high biomass cover crops with organic mulches may be an option for no-till vegetable production, but information on mineralization rates from these residues is lacking. The objective of this study was to assess nutrient release rates and persistence from mimosa ( Albizia julibrissin Durazz.), lespedeza [ Lespedeza cuneata (Dum. Cours.) G. Don], oat ( Avena sativa L.) straw, and soybean [ Glycine max (L.) Merr.] residues under conventional and conservation tillage. The experiment was conducted in Tallassee, AL using litterbag methodology in a split-plot design (main plots: two tillage systems; subplots: four residue types). Comparison of rate constants showed that labile portions of residues was more affected by tillage than recalcitrant portions. In spring, mimosa residue contained 78 kg N ha -1 when buried the previous fall, compared to 123 kg N ha -1 when surface placed; soybean residue showed similar results (39 vs. 72 kg N ha -1, respectively). Results were similar for lespedeza (72 vs. 101 kg N ha -1, respectively), but not for oat straw (24 vs. 26 kg N ha -1, respectively). After 1 yr, surface placed mimosa residue mineralized 33% of initial N compared to 71% when buried, while surface placed lespedeza mineralized 36% of initial N compared to 64% when buried. Soybean residue mineralized N quickly regardless of placement (73 vs. 87%, respectively). This study demonstrates that cut-and-carry mulches may be used under conservation tillage for the enhancement of soil organic matter (SOM), soil organic carbon (SOC), and soil N status.
- Authors:
- Qin, L.
- Shuang, L.
- Wenquing, H.
- Xurong, M.
- Hoogenboom, G.
- Changrong, Y.
- Jiantao, D.
- Ahmad, M.
- Nangia, V.
- Source: International Journal of Agricultural and Biological Engineering
- Volume: 3
- Issue: 2
- Year: 2010
- Summary: In the dryland regions of North China, water is the limiting factor for rainfed crop production. Conservation agriculture (featuring reduced or zero tillage, mulching, crop rotations and cover crops) has been proposed to improve soil and water conservation and enhance yields in these areas. Conservation agriculture systems typically result in increased crop water availability and agro-ecosystem productivity, and reduced soil erosion. To evaluate the potential of conservation agriculture to improve soil water balance and agricultural productivity, the DSSAT crop model was calibrated using the data of a field experiment in Shouyang County in the semi-arid northeastern part of the Yellow River Basin. The average annual precipitation at the site is 472 mm, 75% of which falls during the growing season. The site had a maize-fallow-maize rotation, data from two crop seasons (2005 and 2006) and four treatments for calibration and analysis were used. The treatments were: conventional tillage (CT), no-till with straw mulching (NTSM), all-straw incorporated (ASRT) and one-third residue left on the surface with no-till (RRT). The calibration results gave satisfactory agreement between field observed and model predicted values for crop yield for all treatments except RRT treatment, and for soil water content of different layers in the 150 cm soil profile for all treatments. The difference between observed and predicted values was in the range of 3%-25% for maize yield and RMSE was in the range of 0.03-0.06 cm 3/cm 3 for soil water content measured periodically each cropping season. While these results are encouraging, more rigorous calibration and independent model evaluation are warranted prior to making recommendations based on model simulations. Medium-term simulations (1995-2004) were conducted for three of the treatments using the calibrated model. The NTSM and ASRT treatments had similar or higher yields (by up to 36%), higher crop water productivity by up to 28% and reduced runoff of up to 93% or 43 mm compared to CT treatment.
- Authors:
- Tomar, S. S.
- Yadav, A. K.
- Singh, A.
- Pal, G.
- Shahi, U. P.
- Kumar, A.
- Singh, B.
- Gupta, R. K.
- Naresh, R. K.
- Source: Progressive Agriculture
- Volume: 10
- Issue: 2
- Year: 2010
- Summary: Resource conserving technologies (RCTs) with double no-till practices represents a major shift in production techniques for attaining optimal productivity, profitability and water use in rice-wheat system in Indo-Gangetic plains. Conventional tillage and crop establishment methods such as puddled transplanting in the ricewheat ( Oryza sativa L.- Triticum aestivum L.) system in the Indo-Gangetic Plains (IGP) require a large amount of water and labor, both of which are increasingly becoming scarce and expensive. We attempted to evaluate alternatives that would require smaller amounts of these two inputs. A field experiment was conducted in the Western IGP for 2 years to evaluate various tillage and crop establishment systems for their efficiency in labor, water, and energy use and economic profitability. The soil physical properties (bulk density, mean weight diameter of aggregates and infiltration rate) improved significantly compared to puddled transplanted rice-conventional till wheat system. The wide beds and double no-till with flat layouts in rice-wheat system is under evaluation in different scenario of soil, climate, crop cultivars and seeding/crop establishment techniques (direct seeding, transplanting) and showed non consistent results. Systematic information on various aspects of narrow/wide beds is lacking. The productivity of rice with wide beds was at par compared to reduced tillage transplanted rice layouts but, the wheat productivity was reverse as it was highest under wide beds. The RW system productivity was highest with wide raised beds does differ significantly with other tillage and crop establishment techniques except with mulch crop establishment techniques. The water productivity of both rice and wheat was markedly improved with wide beds compared to other tillage and crop establishment techniques. Under research managed trials (rice on double no-till flat) with basmati rice, the profitability was maximum with ZTDSR (US $ 505 ha -1) and was least with direct seeded on narrow raised beds (US$305 ha -1). The study showed that the conventional practice of puddled transplanting could be replaced with no-tillage-based crop establishment methods to save water and labor. However, the occurrence and distribution of rainfall during the cropping season had considerable influence on the savings in irrigation water.
- Authors:
- He, X.
- Qin, S.
- Hu, C.
- Zhang, Y.
- Dong, W.
- Source: European Journal of Soil Biology
- Volume: 46
- Issue: 3-4
- Year: 2010
- Summary: This study compared the responses of soil chemical and microbial indicators to the conservational tillage (CT) versus traditional tillage (TT) in a Haplic Cambisol in the North China Plain (NCP). These indicators included soil organic C (SOC), soil total N (STN), soil available P (SAP), cation exchange capacity (CEC), exchangeable Ca 2+ and Mg 2+, microbial biomass C (MBC), microbial biomass N (MBN), alkaline phosphomonoesterase (AP), beta-glucosidase, N-acetyl-beta-glucosaminidase (NAG), nitrate reductase (NR), protease, urease and the geometric mean of the assayed enzymes (GMea). Our results showed that almost all investigated parameters, except the contents of CEC, Ca 2+, Mg 2+ and the ratios of GMea/MBN and C/N, were significantly higher under the CT (no-till, NT and reduced-till, RT) than those under the TT, whilst the crop yield was not significantly affected by tillage treatments. Principle component analysis (PCA) showed that the first and second component explained 67.2% and 16.6% of the total variation, respectively. The first component was significantly correlated with GMea, MBC, MBN and beta-glucosidase, and effectively discriminated soils under the NT or RT from those under the TT. Our results indicated that the 6-year CT improved the quality of the Haplic Cambisol by enhancing its chemical and microbial properties, whilst GMea, MBC, MBN and beta-glucosidase were among the most effective indicators for monitoring these improvements.
- Authors:
- Qin, S.
- Hu, C.
- He, X. H.
- Dong, W.
- Cui, J.
- Wang, Y.
- Source: Applied Soil Ecology
- Volume: 45
- Issue: 3
- Year: 2010
- Summary: Micro-scale investigation is helpful for better understanding of the relationships between organic matter, microorganisms and nutrients in soil, and for better interpretation of modifications induced by soil management. The soil particle-size fractions (2000-200, 200-63, 63-2, and 2-0.1 m), contents of soil organic carbon (SOC), total N (STN), available P (SAP), dissolved organic C (DOC), light fraction organic C (LOC), microbial biomass N (MBN), basal respiration (SBR), and relevant enzyme activities of C, N and P transformations, such as beta-glucosidase (beta-G), N-acetyl-beta-glucosaminidase (N-G), protease, urease and alkaline phosphomonoesterase (APH) were analyzed to study the effects of 8-year-period conservational (no-till with residue retention) (CAM) versus traditional agricultural management (moldboard plowing without residue retention) (TAM) to a Haplic Cambisol soil in the North China Plain (NCP). Our results showed that CAM significantly enlarged the stocks of SOC, DOC, LOC, STN and SAP in the 0-10 cm layer, increased the contents of SOC, STN and SAP in the sand fractions, and promoted all of the enzyme activities in the bulk soil and all of the four particle-size fractions. Our results suggested that CAM increased the nutrient contents in the sand fractions by both enlarging the content of particulate organic matter and enhancing the activities of enzymes involved in nutrient cycling in these fractions. On the contrary, the contents of SOC and nutrients in the silt and clay fractions were relatively resistant to the conversion from CAM to TAM, indicating the limitation of CAM for stable SOC sequestration.