• Authors:
    • Hütsch,B. W.
  • Source: Biology and Fertility of Soils
  • Volume: 27
  • Issue: 3
  • Year: 1998
  • Summary: The effect of land use and different soil tillage systems on CH4 oxidation was tested in a laboratory incubation study. Intact soil cores were collected from the topsoil (0–12 cm) of a field site with ploughed, direct-drilled and set-aside treatments, and from an adjacent undisturbed forest site. CH4 oxidation rates were 4.5 to 11 times higher in the direct-drilled than in the continuously ploughed treatment, in the set-aside soil they were intermediate. The oxidation rates in the forest soil were 11 times the highest rate measured at the field site, pointing to a distinct land use effect. Vertical profiles of CH4 oxidation activity revealed a very clear zonation in all treatments. CH4 oxidation increased significantly below the plough layer (0–25 cm), and showed a subsurface maximum under direct-drilling (5–15 cm) and under forest (5–10 cm). The vertical zonation under set-aside was comparable to that under ploughing. Generally, the maximum CH4 oxidizing activity was in the zone nearest to the soil surface, unless various constraints prevented this.
  • Authors:
    • Silburn, D. M.
    • Dimes, J. P.
    • Nelson, R. A.
    • Paningbatan, E. P.
    • Cramb, R. A.
  • Source: Agricultural Systems
  • Volume: 58
  • Issue: 2
  • Year: 1998
  • Summary: A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
  • Authors:
    • Doran, J. W.
    • Koerner, P. T.
    • Power, J. F.
    • Wilhelm, W. W.
  • Source: Soil Science Society of America Journal
  • Volume: 62
  • Issue: 5
  • Year: 1998
  • Summary: Returning crop residue improves water conservation and storage, nutrient availability, and crop yields, We have little knowledge, however, er, of the residual impacts of crop residues on soil properties and crop production. We hypothesized that residual impacts of crop residues vary with the amount of residues used. A 10-yr study near Lincoln, NE, evaluated the residual effects of an earlier 8-yr study of various crop residue amounts on crop growth and selected soil properties. From 1978 through 1985, crop residues were returned at 0, 50, 100, and 150% of the quantity produced by the previous crop (averaging 0 to approximate to 6 Mg ha(-1) yr(-1)). Continuous corn (Zea mays L.) was produced 1986 through 1995 on these plots, except sorghum [Sorghum bicolor (L.) Moench] was substituted in several years. To study management effects on residual responses, plots were subdivided with or without tillage, N fertilizer (60 kg N ha(-1)), and hairy vetch (Vicia villosa L.) cover crop. Residual effects of the 150% residue amount increased grain production 16% compared with the 0% amount (4900 vs. 4250 kg ha(-1), respectively), and were not affected by time or other management practices. Increasing previous residue amount did enhance soil N availability (from 73.0 to 82.3 kg autoclave-mineralizable N ha(-1)) and Bray soil P (16.7 to 20.3 kg ka(-1)). These results are among the first to show that residual effects of crop residue are prolonged (half-life of approximate to 10 yr) and probably result from changes in soil properties that enhance soil nutrient availability.
  • Authors:
    • Unger, P. W.
    • Torbert, H. A.
    • Jones, O. R.
    • Potter, . N.
  • Source: Soil Science
  • Volume: 162
  • Issue: 2
  • Year: 1997
  • Summary: Limited information is available regarding soil organic carbon (SOC) distribution and the total amounts that occur in dryland cropping situations in semiarid regions. We determined crop rotation, tillage, and fertilizer effects on SOC distribution and mass in the semiarid southern Great Plains. A cropping system study was conducted for 10-years at Bushland, TX, to compare no-till and stubblemulch management on four dryland cropping systems: continuous wheat (CW) (Triticum aestivum L.); continuous grain sorghum (CS) (Sorghum bicolor [L.] Moench.); wheat/fallow/sorghum/fallow (WSF); and wheat/fallow (WF). Fertilizer (45 kg N ha-1) was added at crop planting to main plots. Subplots within each tillage and cropping treatment combination received no fertilizer. Ten years after treatment initiation, soil cores were taken incrementally to a 65-cm depth and subdivided for bulk density and SOC determination. The no-till treatments resulted in significant differences in SOC distribution in the soil profile compared with stubblemulch tillage in all four crop rotations, although differences were largest in the continuous cropping systems. Continuous wheat averaged 1.71% SOC in the surface 2 cm of soil compared with 1.02% SOC with stubblemulch tillage. Continuous sorghum averaged 1.54% SOC in the surface 2 cm of soil in no-till compared with 0.97% SOC with stubblemulch tillage. Total SOC content in the surface 20 cm was increased 5.6 t C ha-1 in the CW no-till treatment and 2.8 t C ha-1 in the CS no-till treatment compared with the stubblemulch treatment. Differences were not significantly different between tillage treatments in the WF and WSF systems. No-till management with continuous crops sequestered carbon in comparison to stubblemulch management on the southern Great Plains. Fallow limits carbon accumulation., (C) Williams & Wilkins 1997. All Rights Reserved.
  • Authors:
    • Maddux, L. D.
    • Gordon, W. B.
    • Rice, C. W.
    • Omay, A. B.
  • Source: SOIL SCIENCE SOCIETY OF AMERICA JOURNAL Pages:
  • Volume: 61
  • Issue: 6
  • Year: 1997
  • Summary: With renewed interest in maintaining our soil resources, it is important to establish criteria that can describe and quantify the effect of different crop management practices on soil organic matter (SOM). We conducted this study to assess changes in SOM and other soil properties after long-term (>10 yr) continuous corn (Zea mays L.; CC) and corn-soybean rotation [Glycine max (L.) Merr,; C/SB] with and without fertilizer, Soil samples were collected from two furrow-irrigated CC and C/SB rotations on a Crete silt loam (ene, montmorillonitic, mesic Pachic Argiustoll) and a Eudora loam (coarse-silty, mixed, mesic Fluventic Hapludoll). Long term (350-d) laboratory incubation at optimum moisture and temperature conditions measured potentially mineralizable C (PMC) and N (PMN) as a measure of the active fraction of soil organic C and N, Microbial biomass C (MBC) and N (MBN), organic C and N, pH, and texture also were determined, Crop rotations that included high-residue-producing crops such as corn and addition of fertilizer increased soil organic C and N, Crop rotation did not affect PMC in the Crete soil, but addition of fertilizer significantly increased PMC by 32%. The PMN in both soils was not affected by crop rotation or fertilizer addition, Inclusion of soybean in the rotation decreased the stable and active fractions of organic C and N, Changes in soil organic C and N in response to crop rotation and fertilizer addition were related to the estimated amount of crop residues returned to the soil and to soil texture.
  • Authors:
    • Walters, D. T.
    • Kessavalou, A.
  • Source: Agronomy Journal
  • Volume: 89
  • Issue: 1
  • Year: 1997
  • Summary: Rotation of corn (Zea mays L.) with soybean [Glycine max (L.) Merr.] provides certain economic and environmental advantages over monoculture corn. Low soybean residue production and persistence, however, promote potentially excessive soil erosion following soybean harvest. An irrigated field experiment was conducted in eastern Nebraska for 4 yr (1990-1993) under various tillage treatments and N rates to evaluate the effects of a winter rye (Secale cereale L.) cover crop following soybean on (i) rye dry matter yield, (ii) surface residue cover for erosion protection, and (iii) corn establishment and production. The soil was a Sharpsburg silty clay loam (fine, montmorillonitic, mesic Typic Argiudolls). Treatments were (i) no-tillage and disk tillage; (ii) corn following soybean with a winter rye cover crop (CBR), corn following soybean without rye (CB) and corn following corn (CC); and (iii) 0, 50, 100, 150, and 300 kg N ha(-1) (applied to corn). Rye aboveground dry matter yield, surface residue cover, and corn yield parameters were estimated. Rye dry matter yield ranged from 0.25 to 2.9 Mg ha(-1) and was influenced by tillage, N rate, and weather conditions in different years. During the years of high rye dry matter yield, presence of rye in the corn-soybean system gave approximately 16% additional surface residue cover prior to planting through cultivation, compared with soybean residue alone. Surface cover by rye and soybean residues in CBR was equivalent to corn residue in CC under both disk and no-till management. In 1 of the 3 yr, corn plant population and grain yield were reduced following rye (CBR) compared with the no rye system (CB), possibly due to apparent allelopathic effects related to the age of rye. No significant difference in N response was observed between CBR and CB corn yields. In general, rotation of corn with soybean (with and without rye) resulted in an increase of approximately 27% in corn grain yield and N uptake over continuous corn. During the years of high rye dry matter production, rye accumulated approximately 45 kg N ha(-1) through aboveground dry matter. Overall, including a winter rye cover crop in the corn-soybean rotation system was beneficial.
  • Authors:
    • Sinclair, T. R.
    • Amir, J.
  • Source: Field Crops Research
  • Volume: 47
  • Issue: 1
  • Year: 1996
  • Summary: Cereal Cyst Nematode (CCN, Heterodera avenae Woll.) has been shown to be a devastating pest for wheat (Triticum aestivum L.) in dryland regions. Following in the season preceding the cropping season has been hypothesized to sanitize the soil of CCN and allow wheat production. This paper explores management options that might allow the continuous production of wheat in these regions. In a 20-year study in the Negev, Israel, on a sandy loam, loessial, soil, it was found that in those seasons with high rainfall there was virtually no decrease in annual wheat yields for continuous crops as compared to biennial fallow yields obtained with the conventional wheat system. The hypothesis that high soil water content substantially alleviates the damage resulting from CCN infestation was confirmed in a pot study. A practical solution for maintaining high soil water content in the field was to leave a straw mulch on the soil surface to decrease soil evaporation. A chopper was added to a grain harvester to finely chop the straw so that it settles to the soil surface through the stubble, and a no-till drill was used for sowing through the straw. The straw-mulch system was shown to result in annual yields from continuous wheat that were equivalent to yields in alternate years with the conventional fallow wheat system, thereby doubling wheat production in this dryland region.
  • Authors:
    • Kalejaiye, A. S.
    • Akinyemi, J. O.
  • Source: International Journal of Tropical Agriculture
  • Volume: 14
  • Issue: 1/4
  • Year: 1996
  • Summary: To protect the fragile soils of the tropics under the continuous cultivation systems, some farming conservation techniques have been advocated. A survey of the farming systems and the extent of erosion were carried out on a tropical rain forest of Nigeria with respect to the current status of the soil management practices. The results showed that ~85% of the farmers reported of the severe erosion problems on their farms. The rural farmers found that cover cropping was the most effective means of soil management and shifting cultivation was the most common farming system in this area. Approximately 83% of the farmers have their farms scattered at the different locations which makes the implementation of adequate soil conservation practices very difficult unless new and innovative cropping/farming systems are developed. The various strategies suggested for improving the farm conservation practices, particularly those that can be easily adopted by the rural farmers, are discussed.
  • Authors:
    • Cassel, D. K.
    • Alegre, J. C.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 58
  • Issue: 1
  • Year: 1996
  • Summary: A change from slash-and-burn to continuously cropped agricultural systems is occurring in heavily populated areas in the humid tropics. Well managed alternative systems to slash-and-burn can reduce soil structure deterioration, maintain soil fertility, and promote long-term. productivity. The objectives of this paper are to describe the dynamics of soil physical properties under slash-and-burn and some alternative systems, Different land-clearing methods and post land-clearing management systems were evaluated on Typic Paleudults at Yurimaguas, Peru, for their effects on soil physical properties such as: bulk density, soil water characteristic, infiltration rate, aggregate stability, and penetrometer cone resistance. Mechanical clearing reduced the infiltration rate from 420 mm h(-1) before clearing to 35 mm h(-1) for the straight blade and 95 mm h(-1) for the shear-blade bulldozing. Straight-blade clearing damaged soil structure the most as indicated by a decrease in the percentage of larger soil aggregates. The practice of planting on raised beds prevented foot compaction of soil near the plants; bulk density was 1.14 and 1.29 Mg ha(-1) for bedded and flat planted soil, respectively. Of the various agroforestry systems evaluated (multistrata, peach palm production, shifting agriculture low input and high input continuous cropping) bulk density was lower after 4 years for the systems with trees or cover crops. Mean annual soil loss for alley cropping on sloping soils was 0.2 Mg ha(-1) year(-1) compared with 53 Mg ha(-1) year(-1) for two annual crops per year. The infiltration rate after 5 years of intensive grazing on five associations of legumes with grasses was reduced from 127 to 41 mm h(-1). Overgrazing caused severe soil compaction and reduced earthworm biomass, Research indicates that the greatest change in soil physical properties occurs during mechanical land clearing, Agroforestry systems improved soil physical properties when cover crops and trees were included in the system.
  • Authors:
    • Lyon, D. J.
    • Baltensperger, D. D.
  • Source: Journal of Production Agriculture
  • Volume: 8
  • Issue: 4
  • Year: 1995
  • Summary: Downy brome (Bromus tectorum L.), Jointed goatgrass (Aegilops cylindrica Host), and volunteer cereal rye (Secale cereale L.) are winter annual grass weeds that are increasingly troublesome in the winter wheat (Triticum aestivum L. emend. Thell.)-fallow rotation areas of the western USA. Six dryland cropping systems-continuous no-till winter wheat, winter wheat-fallow with fall tillage, winter wheat-fallow with fail applied herbicide, winter wheat-fallow-fallow, winter wheat-sunflower-fallow, and winter wheat-prose millet-fallow-were compared for their effect on winter annual grass densities in winter wheat. Winter annual grass densities averaged 145, 4.4, and 0.4 plants/sq yard for the 1-, 2-, and 3-yr systems, respectively. Eradication of the winter annual grasses was not achieved with any of the systems. Dockage and foreign material levels in wheat grain were lower in 3-yr than in 2-yr cropping systems. Jointed goatgrass was the most persistent annual grass investigated.