- Authors:
- Shrivastava, G. K.
- Lakpale, R.
- Rathiya, P. S.
- Bargali, S. S.
- Source: Journal of Plant Development Sciences
- Volume: 2
- Issue: 1/2
- Year: 2010
- Summary: The field experiment was conducted during kharif season of 2004 and 2005 at the Instructional Farm, Indira Gandhi Agricultural University, Raipur (C.G.) to study the effect of nutrient blending with FYM and intercropping on biomass production and economics of hybrid cotton-soybean intercrops under irrigated condition. The growth characters of cotton like-plant height, number of branches, number of leaves, dry matter accumulation, LAI, CGR, and RGR were the highest with sole cotton with 100% RDF. In case of soybean, the growth parameters like-plant height, number of branches, number of leaves, dry matter accumulation, LAI, CGR, and RGR were the highest under sole soybean with 100% RDF. The bolls per plant in cotton were the highest under sole cotton with 100% RDF. Similar trend for yield components were observed in case of soybean. Sole cotton with 100% RDF resulted in maximum seed cotton and stalk yield as compared to other intercropping treatments. Similar trend was also noted with sole soybean with 100% RDF, which recorded significantly the highest seed and stover yield as compared to others. The maximum values of LER, cotton equivalent yield, monetary advantage gross realization, net realization ha -1 and B:C ratio were recorded under C+S (2:4)+100%RDF, which was closely followed by treatment C+S (2:4)+1 t FYM ha -1+75% RDF (BL).
- Authors:
- Nalayini, P.
- Praharaj, C. S.
- Sankaranarayanan, K.
- Bandyopadhyay, K. K.
- Gopalakrishnan, N.
- Source: The Indian Journal of Agricultural Sciences
- Volume: 80
- Issue: 7
- Year: 2010
- Summary: Climatic change affects cotton (Gossypium sp.) yield, photosynthesis, weeds and pest occurrence. Farmers should reduce inorganic inputs utilization to reduce the environmental effects of fertilizers and pesticides. N-fixing Azotobacter and Azospirillum, legumes rotation, application of slow-release N fertilizers, adoption of drip-fertigation, incorporation of cotton stalk could reduce fertilizer usage. The application of FYM, greengram ( Vigna radiata), Gliricidia sp. and sunnhemp ( Crotolaria juncea [ Crotalaria juncea]) as green manure recorded 15-32% increase in yield. Different cotton species should be planted on different environments. G. arboreum is suitable for environments with low and erratic rainfall with drought situations. G. herbaceum is salt tolerant. The available drought tolerant G. hirsutum genotypes, namely 'LRA 5166', 'KC 2' and 'AKH 081' may show better adaptation. The risk and uncertainty imposed by climatic change could be managed by adoption of location-specific intercropping and multi-tier cropping systems. In situ soil moisture conservation techniques include contour binding, graded, narrow or broad ridges or beds separated by furrows, ridges and furrow, opening of furrow after every rows of cotton, black polythene mulch, and spreads of crop residue were useful.
- Authors:
- Thierfelder, C.
- Wall, P. C.
- Source: Experimental Agriculture
- Volume: 46
- Issue: 3
- Year: 2010
- Summary: Conservation agriculture (CA) systems are based on minimal soil disturbance, crop residue retention and crop rotation. Although the capacity of rotations to break pest and disease cycles is generally recognized, other benefits of crop rotations in CA systems are seldom acknowledged and little understood. We monitored different conventional and CA cropping systems over the period from 2005 to 2009 in a multi-seasonal trial in Monze, southern Zambia. Both monocropped maize and different maize rotations including cotton and the green manure cover crop sunnhemp (Crotalaria juncea) were compared under CA conditions, with the aim of elucidating the effects of crop rotations on soil quality soil moisture relations and maize productivity. Infiltration, a sensitive indicator of soil quality, was significantly lower on conventionally ploughed plots in all cropping seasons compared to CA plots. Higher water infiltration rate led to greater soil moisture content in CA maize treatments seeded alter cotton. Earthworm populations, total carbon and aggregate stability were also significantly higher on CA plots. improvements in soil quality resulted in higher rainfall use efficiency and higher maize grain yield on CA plots especially those in a two- or three-year rotation. lit the 2007/08 and 2008/2009 season, highest yields were obtained from direct-seeded maize after sunnhemp, which yielded 74% and 136% more than maize in the conventionally ploughed control treatment with a continuous maize crop. Even in a two-year rotation (maize-cotton), without a legume green manure cover crop, 47% and 38% higher maize yields were recorded compared to maize in the conventionally ploughed control in the two years, respectively This suggests that there are positive effects from crop rotations even in the absence of disease and pest problems. The overall profitability of each system will, however, depend on markets and prices, which will guide the farmer's decision on which, Wally, rotation to choose,
- Authors:
- Mandal, D. K.
- Tiwary, P.
- Venugopalan, M. V.
- Challa, O.
- Source: Agropedology
- Volume: 20
- Issue: 1
- Year: 2010
- Summary: The average productivity of cotton, sorghum and soybean in Maharashtra is considerably lower than their potential. There is also a large temporal and spatial variability in their productivity due to the spatial distribution of soils and its interaction with the rainfall pattern. WOFOST model-version 7.1 was validated and used for quantification of yield gaps under different rainfall patterns for cotton, sorghum and soybean on five soil series of Maharashtra. The validation results indicate that the model performed well with RMSE less than 20% and simulated the yields with Model efficiency (ME) values 0.73, 0.88 and 0.89 for cotton, sorghum and soybean, respectively. Between soil series, the variability in the mean simulated yield among years experiencing normal rainfall was higher for cotton (CV=53.9%) than for sorghum (CV=27.6%) or soybean (CY=20.1%) as soil parameters significantly affected the cotton yields. There was significant correlation between simulated yield with soil depth (r=0.91) and extractable soil moisture (r=0.96) for cotton; but not for sorghum and soybean. It is concluded that the WOFOST model could capture the effects of spatial distribution of soil and rainfall pattern on the yields of cotton, sorghum and soybean and can compliment other techniques in suggesting alternative crop options for aberrant rainfall situations.
- Authors:
- Chaudhari, P. V.
- Vaidkar, R. D.
- Vitonde, A. K.
- Rangacharya, D. S.
- Source: Agriculture Update
- Volume: 5
- Issue: 3/4
- Year: 2010
- Summary: This study was conducted in Amravati and Bhatkuli Tahsils of Amravati district and five villages from each tahsil which were adopting sorghum based cropping systems. The data was collected for the year 2008-2009 from 24 cultivators for each system randomly. The ratio return over the investment at cost 'A' were 2.34, 2.58, 2.47, 2.42, 2.64 and at cost 'B', the ratio were 1.64, 1.85, 1.71, 1.68, 1.83 respectively for sole sorghum, sorghum+tur, sorghum+soybean, sorghum+cotton, sorghum+green gram. In case of sorghum+tur, the ratio at cost 'C' showed higher ( i.e. 1.95) and lower in sole sorghum (i.e.1.39). Thus, the study indicated that the sorghum+tur was found to be most profitable cropping system followed by sorghum+cotton cropping system.
- Authors:
- Dahatonde, S.
- Bunde, D.
- Katkhede, S.
- Pohare, J.
- Khambalkar, V.
- Source: Journal of Agricultural Science
- Volume: 2
- Issue: 4
- Year: 2010
- Summary: The present research work has been carried out at Central Research Station farm of Dr. PDKV, Akola and at Katkheda and Sutala village of the Akola and Bulbhana district respectively. The operations considered were land preparation, sowing, intercultural, harvesting and crop residue management etc. The inputs like human power, bullock power for traditional operation were studied in entire work of the research. Similarly, for the same crops these operations were carried out by the mechanized practice for the exact quantification of the operational energy input. The study reflects the energy use patterns in mechanized and traditional farming and optimized energy efficient cropping system through mechanized farming over traditional farming. The practices evaluated for the crop production which resulted in the high yielding of crop and the crop residues. On the basis of results obtained, it was observed that the traditional operational energy requirement increases from 2680.78 MJ/ha in traditional method to 3130.72 MJ/ha in mechanized method for green gram crop. While, there is decrease in cost of operation from Rs 8407.5/ha in traditional method to Rs 5147.0/ha in mechanized system. Similar trend was observed in cotton, soybean, sorghum and wheat crop. For all the crops seed bed preparation is done by tractors in traditional as well as mechanized method except in mechanized method land smoothening is done by self propelled tiller instead of bullock drawn blade harrow. In most of the crops the farm operations were mechanized with different implements except harvesting operation, due to unavailability of appropriate machine for harvesting of crops except wheat crop. Overall it seen that the application of modern implements and machineries for the crop production over the traditional practices reduces the cost of production which surely impact on the crop production and the net income of the farmers.
- Authors:
- Stephenson, D.
- Miller, D.
- Williams, B.
- Source: Louisiana Agriculture
- Volume: 53
- Issue: 3
- Year: 2010
- Authors:
- Mackowiak, C. L.
- Marois, J. J.
- Wright, D. L.
- Brennan, M.
- Zhao, D.
- Source: Agronomy for Sustainable Development
- Volume: 30
- Issue: 2
- Year: 2010
- Summary: Nitrogen (N) leaching from agricultural soils is a major concern in the southeastern USA. A winter cover crop following the summer crop rotation is essential for controlling N leaching and soil run-off, thereby improving sustainable development. Rotation of peanut (Arachis hypogea L.) and cotton (Gossypium hirsutum L.) with bahiagrass (Paspalum notatum) (i.e. sod-based rotation) can greatly improve soil health and increase crop yields and profitability. In the sod-based rotation, the winter cover crop is an important component. The objective of this study was to determine effects of summer crops, cotton and peanut, on growth and physiology of a subsequent oat (Avena sativa L.) cover crop in both a conventional (Peanut-Cotton-Cotton) and sod-based (Bahiagrass-Bahiagrass-Peanut-Cotton) rotations. Two rotations with an oat cover crop were established in 2000. In the 2006-07 and 2007-08 growing seasons, oat plant height, leaf chlorophyll and sap NO(3)-N concentrations, shoot biomass, and N uptake were determined. Our results showed that the previous summer crop in the two rotations significantly influenced oat growth and physiology. Oat grown in the sod-based rotation had greater biomass, leaf chlorophyll and NO(3)-N concentrations as compared with oat grown in the conventional rotation. At pre-heading stage, oat in the sod-based rotation had 44% greater biomass and 32% higher N uptake than oat in the conventional rotation; oat following peanut produced 40 to 49% more biomass and accumulated 27 to 66% more N than oat following cotton. Therefore, the sod-based rotation improved not only summer crops, but also the winter cover crop. Increased oat growth and N status from the sod-based rotation indicated greater soil quality and sustainability.
- Authors:
- Ferreira, A. C. de B.
- Lamas, F. M.
- Source: Revista Ceres
- Volume: 57
- Issue: 6
- Year: 2010
- Summary: The objective of this work was to evaluate the production, persistence and the effect of different cover crops on weed control and cotton yield in no-tillage system. The treatments included: Pennisetum glaucum; Brachiaria ruziziensis; Sorghum bicolor; Eleusine coracana; Crotalaria juncea; Crotalaria spectabilis; Avena strigosa; Raphanus sativus; P. glaucum+ C. juncea; P. glaucum+ C. spectabilis; B. ruziziensis+ C. juncea; B. ruziziensis+ C. spectabilis; S. bicolor+ C. juncea; S. bicolor+ C. spectabilis; E. coracana+ C. juncea; E. coracana+ C. spectabilis; A. strigosa+ R. sativus; P. glaucum+ R. sativus; fallow. The cover crops were sown in late summer, after soybean harvest. The cotton cultivar BRS 269-Buriti was sown nine months later. The experiment was carried out in a randomized complete block design with four replications. Dry matter of B. ruziziensis, B. ruziziensis+ C. juncea, B. ruziziensis+ C. spectabilis and P. glaucum+ R. sativus was above 6.8 t ha -1 The dry matter produced by B. ruziziensis provided sufficient soil cover during the cotton cycle. Residues of B. ruziziensis, B. ruziziensis+ C. juncea and B. ruziziensis+ C. spectabilis reduced weed incidence until the time of cotton sowing, lasting until the initial stages of cotton development. The use of both R. sativus and A. strigosa, alone or in mixtures, resulted in reduced yield of cotton fiber.
- Authors:
- Source: Journal of Hydrology
- Volume: 384
- Issue: 3-4
- Year: 2010
- Summary: Crop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5′ by 5′, distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal crops was 1109 m 3 Mg -1 of green water and 291 m 3 Mg -1 of blue water, while average crop water productivity of cereal crops was 714 g m -3. If currently irrigated crops were not irrigated, global production of dates, rice, cotton, citrus and sugar cane would decrease by 60%, 39%, 38%, 32% and 31%, respectively. Forty-three per cent of cereal production was on irrigated land, and without irrigation, cereal production on irrigated land would decrease by 47%, corresponding to a 20% loss of total cereal production. The largest cereal production losses would occur in Northern Africa (66%) and Southern Asia (45%) while losses would be very low for Northern Europe (0.001%), Western Europe (1.2%), Eastern Europe (1.5%) and Middle Africa (1.6%). Uncertainties and limitations are discussed in the manuscript, and a comparison of GCWM results to statistics or results of other studies shows good agreement at the regional scale, but larger differences for specific countries.