• Authors:
    • Miller, M. J.
  • Year: 2009
  • Summary: Climate change is a worldwide environmental problem that will affect every citizen of the planet. Societies can respond to climate change by reducing greenhouse gas emissions and reducing the rate and the magnitude of effects caused by climate change. Agriculture is a major contributor to the problem of climate change, but also has the capacity to be a part of the solution. No-till practices are considered dual purpose in that it has potential as a climate change mitigation strategy as well as an adaptation strategy. Economists have proposed using a market system to aid in the mitigation of climate change because it creates financial incentives to innovate and conserve. Carbon markets have presented farmers with the opportunity to be paid for practices that decrease emissions and sequester carbon, such as no-till farming. No-till farming practices have been in use in the United States for decades by some farmers in order to reduce soil erosion. However, many farmers continue to use traditional tillage methods that release carbon into the atmosphere. In order to exploit the carbon sink capacity of agricultural soils and adapt to the effects of climate change, more farmers need to utilize carbon sequestering practices such as continuous no-till farming. Most research on the introduction of new practices focuses on the initial adoption decision, with little research focusing on the continued use of the practices. The present study focuses on the adoption of no-till practices and carbon credits, and considers continuous no-till farming as a gateway to the adoption of carbon credits. A survey of 228 farmers at the Conservation Tillage and Technology Conference in Ada, Ohio, provided data used in this study. Fifty-nine percent of the respondents practice continuous no-till on some or all of their land, which indicates eligibility for carbon credits. Yet only four survey respondents currently participate in carbon credit programs. Results indicate that the majority, 88 percent, of no-till farmers surveyed are aware of carbon credit programs, which signals that lack of awareness of the program is not the main reason for non-participation. Findings indicate that there is a substantial relationship between the use of no-till practices and satisfaction with them. Additionally, there is a relationship between the use of no-till practices and participation in other resource conservation programs. The study also finds that belief in anthropogenic climate change is strongly associated with liberal political beliefs, yet neither belief is associated with the use of continuous no-till practices. Additional findings suggest that older farmers tend to be more likely to adopt no-till practices and use of no-till practices is associated with smaller farm operations. The importance attributed to human practices as a cause for climate change, degree of familiarity with carbon-related topics, education, and dedication to farm activities were not found to be statistically related to the use of no-till practices.
  • Authors:
    • Siri-Prieto, G.
    • Ernst, O.
  • Source: Soil & Tillage Research
  • Volume: 105
  • Issue: 2
  • Year: 2009
  • Summary: Soil degradation associated with tillage is a major problem in Uruguayan agriculture. Either rotation of crops with pastures (ROT) or no-till (NT) cropping have been proposed as alternatives to minimize the impact of agriculture on soil quality. The combined impact on soil properties of ROT and NT has not been evaluated. In this study, we report results of the first 12 years of a long-term experiment established on a clay loam soil in western Uruguay. The objective was to determine the influence of conventional tillage (CT) and NT on systems under continuous cropping (CC, two crops per year) or ROT (3.5-year annual crops/2.5-year pastures). Soil samples taken at the beginning of the experiment in 1994 and in 2004 were analyzed for organic carbon (SOC), total organic carbon (TSOC) and total nitrogen content (STN), and for water-stable aggregation (WAS). Soil loss and erodibility indicators were studied using microrain simulator. With 12 years, the cumulative carbon (C) inputs of aboveground biomass were similar between tillage, but C input in CC was 50% higher than ROT. This difference was explained because 84% of the pastures dry matter was consumed by animals. Nevertheless we estimated a higher below ground biomass in ROT compared to CC systems (24.9 Mg ha-1 vs. 10.9 Mg ha-1). NT presented 7% higher SOC than CT (0-18 cm) with no differences between rotation systems. While all treatments declined in STN during 12 years, ROT had 11% and 58% higher STN and WAS than CC systems, with a large impact of the pasture under CT. Runoff and erosion were minimized under NT in both rotations systems. Thus, including pastures in the rotation, or switching from CT to NT improved soil quality properties. The expected benefit of combining NT and ROT will likely require more years for the cumulative effect to be detectable in both C input and soil properties.
  • Authors:
    • Lorenz, N.
    • Eastridge, M. L.
    • Dick, R. P.
    • Barker, D. J.
    • Sulc, R. M.
    • Fae, G. S.
  • Source: Agronomy Journal
  • Volume: 101
  • Issue: 5
  • Year: 2009
  • Summary: The benefits of cover crops within crop rotations are well documented, but information is limited on using cover crops for forage within midwestern United States cropping systems, especially under no-tillage management. Our objective was to evaluate plant, animal, and soil responses when integrating winter cover crop forages into no-till corn (Zea mays L.) silage production. Three cover crop treatments were established no-till after corn silage in September 2006 and 2007 at Columbus, OH: annual ryegrass (Lolium multiflorum L.), a mixture of winter rye (Secale cereale L.) and oat (Avena sativa L.), and no cover crop. Total forage yield over autumn and spring seasons was 38 to 73% greater (P <= 0.05) for oat + winter rye than for annual ryegrass. Soil penetration resistance (SPR) in May 2007 was 7 to 15% greater (P <= 0.10) in the grazed cover crops than in the nongrazed no cover crop treatment; however, subsequent silage corn yield did not differ among treatments, averaging 10.4 Mg ha(-1) in August 2007. Compared with the no cover crop treatment, cover crops had three- to fivefold greater root yield, threefold greater soil microbial biomass (MB) in spring 2008, and 23% more particulate organic carbon (POC) concentrations in the 0- to 15-cm soil depth. integration of forage cover crops into no-till corn silage production in Ohio can provide supplemental forage for animal feed without detrimental effects on subsequent corn silage productivity, with the added benefit of increasing labile soil C.
  • Authors:
    • Jordan, D.
    • Owen, M. D. K.
    • Wilson, R. G.
    • Young, B. G.
    • Weller, S. C.
    • Johnson, W. G.
    • Kruger, G. R.
    • Shaw, D. R.
    • Givens, W. A.
  • Source: Weed Technology
  • Volume: 23
  • Issue: 1
  • Year: 2009
  • Summary: A phone survey was administered to 1,195 growers in six states (Illinois, Indiana, Iowa, Mississippi, Nebraska, and North Carolina). The survey measured producers' crop history, perception of glyphosate-resistant (GR) weeds, past and present weed pressure, tillage practices, and herbicide use as affected by the adoption of GR crops. This article describes the changes in tillage practice reported in the survey. The adoption of a GR cropping system resulted in a large increase in the percentage of growers using no-till and reduced-till systems. Tillage intensity declined more in continuous GR cotton and GR soybean (45 and 23%, respectively) than in rotations that included GR corn or non-GR crops. Tillage intensity declined more in the states of Mississippi and North Carolina than in the other states, with 33% of the growers in these states shifting to more conservative tillage practices after the adoption of a GR crop. This was primarily due to the lower amount of conservation tillage adoption in these states before GR crop availability. Adoption rates of no-till and reduced-till systems increased as farm size decreased. Overall, producers in a crop rotation that included a GR crop shifted from a relatively more tillage-intense system to reduced-till or no-till systems after implementing a GR crop into their production system.
  • Authors:
    • Alberta Environment
  • Year: 2009
  • Summary: The opportunity for generating carbon offsets with this protocol arises from the direct and indirect reductions of greenhouse gas (GHG) emissions through implementing no-till and reduced till systems on agricultural lands.
  • Authors:
    • Alluvione, F.
    • Del Grosso, S. J.
    • Halvorson, A. D.
  • Source: Better Crops with Plant Food
  • Volume: 93
  • Issue: 1
  • Year: 2009
  • Summary: Research shows that application of N fertilizer increases nitrous oxide (N2O) emissions linearly from irrigated cropping systems in Colorado. Conventional-till continuous corn had a higher level of N2O emissions than no-till continuous corn. Inclusion of soybean or dry bean in the no-till corn rotation increased the level of N2O emissions during the corn year of the rotation. Use of controlled release and stabilized N sources reduced N2O emissions under no-till when compared to urea and UAN fertilizer sources. Results of this work indicate that there are crop and fertilizer N management alternatives to reduce N2O emissions from irrigated systems.
  • Authors:
    • Horwath, W.
    • Kallenbach, C.
    • Assa, J.
    • Burger, M.
  • Year: 2009
  • Authors:
    • Lu, Y.
    • Conklin, A. E.
    • Teasdale, J. R.
    • Hanson, J. C.
    • Hima, B. L.
    • Cavigelli, M. A.
  • Source: Renewable Agriculture and Food Systems
  • Volume: 24
  • Issue: 2
  • Year: 2009
  • Summary: Interest in organic grain production is increasing in the United States but there is limited information regarding the economic performance of organic grain and forage production in the mid-Atlantic region. We present the results from enterprise budget analyses for individual crops and for complete rotations with and without organic price premiums for five cropping systems at the US Department of A(Agriculture-Agricultural Research Service (USDA-ARS) Beltsville Farming Systems Project (FSP) from 2000 to 2005. The FSP is a long-term cropping systems trial established in 1996 to evaluate the sustainability of organic and conventional grain crop production. The five FSP cropping systems include a conventional. three-year no-till corn (Zea mays L.)-rye (Secale cereale L.) cover crop/soybean (Glycine max (L.) Merr)-wheat (Triticum aestivum L.)/soybean rotation (no-till (NT)), a conventional, three-year chisel-till corn-rye/soybean-wheat/soybean rotation (chisel tillage (CT)), a two-year organic hairy vetch (Vicia villosa Roth)/corn-rye/soybean rotation (Org2), a three-year organic vetch/corn-rye/soybean-wheat rotation (Org3) and a four- to six-year organic corn-rye/soybean-wheat-red clover (Trifolium pratense L.)/orchard grass (Dactylis glomerata L.) or alfalfa (Medicago sativa L.) rotation (Org4+). Economic returns were calculated for rotations present from 2000 to 2005, which included some slight changes in crop rotation sequences due to weather conditions and management changes additional analyses were conducted for 2000 to 2002 when all crops described above were present in all organic rotations. Production costs were, in general, greatest for CT, while those for the organic systems were lower than or similar to those for NT for all crops. Present value of net returns for individual crops and for full rotations were greater and risks were lower for NT than for CT. When price premiums for organic crops were included in the analysis, cumulative present value of net returns for organic systems (US$3933 to 5446 ha(-1), 2000 to 2005. US$2653 to 2869 ha(-1), 2000 to 2002) were always Substantially greater than for the conventional systems (US$1309 to 1909 ha(-1),2000 to 2005; US$634 to 869 ha(-1), 2000 to 2002). With price premiums, Org2 had greater net returns but also greater variability of returns and economic risk across all years than all other systems, primarily because economic Success of this short rotation was highly dependent on the success of soybean, the crop with the highest returns. Soybean yield variability was high due to the impact of weather on the success of weed control in the organic systems. The longer, more diverse Org4+ rotation had the lowest variability of returns among organic systems and lower economic risk than Org2. With no organic price premiums, economic returns for corn and soybean in the organic systems were generally lower than those for the conventional systems due to lower grain yields in the organic systems. An exception to this pattern is that returns for corn in Org4+ were equal to or greater than those in NT in four of six years due to both lower production costs and greater revenue than for Org2 and Org3. With no organic premiums, present value of net returns for the full rotations was greatest for NT in 4 of 6 years and greatest for Org4+ the other 2 years, when returns for hay crops were high. Returns for individual crops and for full rotations were, in general, among the lowest and economic risk was, in general, among the highest for Org2 and Org3. Results indicte that Org4+, the longest and most diverse rotation, had the most stable economic returns among organic systems but that short-term returns could be greatest with Org2. This result likely explains, at least in part, why some organic farmers in the mid-Atlantic region, especially those recently converting to organic methods, have adopted this relatively short rotation. The greater stability of the longer rotation, by contrast, may explain why farmers who have used organic methods for longer periods of time tend to favor rotations that include perennial forages.
  • Authors:
    • Lal, R.
    • Chatterjee, A.
  • Source: Soil & Tillage Research
  • Volume: 104
  • Issue: 2
  • Year: 2009
  • Summary: No-tillage (NT) farming offers innumerable benefits to soil and water conservation, however, its potential to sequester soil organic carbon (SOC) and related soil properties varies widely. Thus, the impact of long-term (>4 yr) NT-based cropping systems on SOC sequestration and selected soil physical and chemical parameters were assessed across soils within five Major land Resource Areas (MLRAs: 99 and 111 in Michigan; 124 and 139 in Ohio; and 127 in Pennsylvania) in eastern U.S.A. Soil samples were collected from paired fields of NT and plow tillage (PT) based cropping systems and an adjacent woodlot (WL). The SOC concentration, bulk density (rho(b)), texture, pH, electrical conductivity (EC), soil N, coarse particulate organic matter (CPOM) C and N, and nitrate N (NO3-N) concentrations were determined. Conversion from NT to PT practice increased surface soil pH from 5.97,6.56 and 6.02 to 6.62, 6.91 and 7.09 under MLRAs 127, 111 and 99, respectively. NT soils had higher SOC concentration soils by 30,50 and 67% over PT soils at 0-5 cm depth under MLRAs 99, 111 and 127, respectively. Considering the whole soil profile SOC, WL had higher SOC pool than NT and PT practices under MLRAs 99, 111 and 124, however, there was no significant difference (P < 0.05) between NT and PT practices across five soils. Almost the same trend was observed in the case of depthwise soil N content. NT soil had higher N content than PT soils by 27,44 and 54% under MLRAs 99,127 and 111, respectively. However, whole soil profile N content of NT soil was significantly higher by 12% than PT soil under MLRA 99. Concentrations of CPOM associated C and N of NT soil was higher than PT soil under MLRAs 99. 111 and 127 at 0-5 soil depth. These results indicated that impact of tillage on soil C and associated soil quality parameters is confined within specific soil types. (C) 2009 Elsevier B.V. All rights reserved.
  • Authors:
    • Paustian, K.
    • Rice, C.
    • Grove, J.
    • Alley, M.
    • Duiker, S. W.
    • Burras, L.
    • Liebig, M.
    • Lal, R.
    • Franzleubber, A.
  • Year: 2009
  • Summary: The Chicago Climate Exchange (CCX®) Agricultural Best Management Practices - Continuous Conservation Tillage and Conversion to Grassland Soil Carbon Sequestration Offset Project Protocol outlines the process and requirements for Project Proponents to register greenhouse gas (GHG) emission reductions resulting from voluntary conservation tillage practices and/or grassland planting. CCX General Offsets Program Provisions, the CCX Offset Project Verification Guidance Document, and CCX Offset Project Protocols can be downloaded by visiting www.theccx.com. Requests for further information or comments may be directed to offsets@theccx.com.