• Authors:
    • Lal, R.
    • Chatterjee, A.
  • Source: Soil & Tillage Research
  • Volume: 104
  • Issue: 2
  • Year: 2009
  • Summary: No-tillage (NT) farming offers innumerable benefits to soil and water conservation, however, its potential to sequester soil organic carbon (SOC) and related soil properties varies widely. Thus, the impact of long-term (>4 yr) NT-based cropping systems on SOC sequestration and selected soil physical and chemical parameters were assessed across soils within five Major land Resource Areas (MLRAs: 99 and 111 in Michigan; 124 and 139 in Ohio; and 127 in Pennsylvania) in eastern U.S.A. Soil samples were collected from paired fields of NT and plow tillage (PT) based cropping systems and an adjacent woodlot (WL). The SOC concentration, bulk density (rho(b)), texture, pH, electrical conductivity (EC), soil N, coarse particulate organic matter (CPOM) C and N, and nitrate N (NO3-N) concentrations were determined. Conversion from NT to PT practice increased surface soil pH from 5.97,6.56 and 6.02 to 6.62, 6.91 and 7.09 under MLRAs 127, 111 and 99, respectively. NT soils had higher SOC concentration soils by 30,50 and 67% over PT soils at 0-5 cm depth under MLRAs 99, 111 and 127, respectively. Considering the whole soil profile SOC, WL had higher SOC pool than NT and PT practices under MLRAs 99, 111 and 124, however, there was no significant difference (P < 0.05) between NT and PT practices across five soils. Almost the same trend was observed in the case of depthwise soil N content. NT soil had higher N content than PT soils by 27,44 and 54% under MLRAs 99,127 and 111, respectively. However, whole soil profile N content of NT soil was significantly higher by 12% than PT soil under MLRA 99. Concentrations of CPOM associated C and N of NT soil was higher than PT soil under MLRAs 99. 111 and 127 at 0-5 soil depth. These results indicated that impact of tillage on soil C and associated soil quality parameters is confined within specific soil types. (C) 2009 Elsevier B.V. All rights reserved.
  • Authors:
    • Mishra, U.
    • Lal, R.
    • Christopher, S. F.
  • Source: Soil Science Society of America Journal
  • Volume: 73
  • Issue: 1
  • Year: 2009
  • Summary: No-till (NT) agriculture has been promoted as one of the optimal management practices that preserves soil and water, and increases soil organic C (SOC) compared with conventional tillage (CT) practices. Information on SOC sequestration in NT systems, however, has been based on measurements from the surface soil (<30 cm) and little is known about the extent of SOC sequestration in NT across the entire 0- to 60-cm soil profile. We conducted a regional study of NT farming to assess the extent of SOC sequestration in the whole soil profile across 12 contrasting but representative soils in the Midwestern United States, each within a Major Land Resource Area (MLRA: 98, 111C, 114B, 122 in Indiana; 111A, 111B, 111D, 124, and 126 in Ohio; and 127 and 147 in Pennsylvania). Soils on gentle terrain were sampled in paired NT and CT fields as well as in an adjacent woodlot in each MLRA. The SOC and N concentrations were greater in the surface 0- to 5-cm soil in NT than CT in MLRA 124. The SOC concentration in CT soil was greater than in NT soil at 10 to 30 cm in MLRAs 98 and 126. The total SOC pool for the whole soil profile did not differ between NT and CT in eight of the 12 MLRAs and the total profile SOC was actually greater under CT in MLRAs 98, 127, and 126, resulting in negative C sequestration rates on conversion from CT to NT in these three MLRAs. This regional study suggests that the entire soil profile must be examined and ecosystem C budget assessed when elucidating SOC sequestration in NT vs. CT fields.
  • Authors:
    • Del Grosso, S. J.
    • Halvorson, A. D.
    • Alluvione, F.
  • Source: Journal of Environmental Quality
  • Volume: 38
  • Issue: 5
  • Year: 2009
  • Summary: Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux. from semiarid irrigated soils are poorly understood. We evaluated effects of. (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a Continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris W; 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation Under NT soil management [corn-barley (NTCB); continuous corn (NT-CC); corn-dry bean (NI-CDb)] on CO2 and CH4 flux from a clay loam soil. Carbon dioxide and CH4 fluxes were monitored one to three times per week using vented nonsready state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO2 emissions relative to CT (NT 2.08 Mg CO2-C ha(-1); CT 2.41 Mg CO2-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO2 fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO2-C ha(-1)d(-1) respectively). Growing season CH4 emissions were higher in NT (20.2 g CH4 ha(-1)) than in CT (1.2 g CH4 ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH4 flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH4 oxidation capacity Of this clay learn soil relative to CT plowed and fertilized soil.
  • Authors:
    • Nelson, K. A.
    • Udawatta, R. P.
    • Motavalli, P. P.
    • Bailey, N. J.
  • Source: Agroforestry Systems
  • Volume: 77
  • Issue: 2
  • Year: 2009
  • Summary: The potential for agricultural soils to act as a sink and sequester carbon (C) or a source and emit carbon dioxide (CO2) is largely dependent upon the agricultural management system. The establishment of permanent vegetation, such as trees and grass contour buffer strips, may cause accumulation of above- and below-ground C over time, thereby acting as a sink for tropospheric CO2. However, the effects of contour grass strips and grass-tree strips (agroforestry) on soil CO2 emissions have not been extensively studied in row-crop watersheds in the temperate regions. The objective of this study was to determine the effects of agroforestry and grass contour buffer strips and landscape position on soil surface efflux rate of CO2 in three adjacent agricultural watersheds with claypan soils in northeast Missouri. The three watersheds were in a corn-soybean rotation, and contained (1) cropped only (CR), (2) cropped with grass contour strips (GR), or (3) cropped with tree-grass contour strips (AF) management systems. Soil surface CO2 efflux was measured throughout the 2004 growing season at the upper (UBS), middle (MBS), and lower (LBS) backslope landscape positions within the three watersheds. The cumulative soil CO2 production was lowest in the CR (0.9 kg CO2-C m-2) compared to the AF (1.5 kg CO2-C m-2) and GR watersheds (1.5 kg CO2-C m-2). The lower backslope position (1.6 kg CO2-C m-2) across all three watersheds produced 32 and 40% greater cumulative soil CO2 than the upper and middle backslope positions, respectively. A 72-day incubation study determined the effects of 40, 60, 80, and 100% soil water-filled pore space (WFPS) and N rate (0 and 1.39 g KNO3 kg soil-1) on soil CO2 efflux from bulk soil collected under each management system. The cumulative CO2 production was highest in the grass soil (1,279 mg CO2-C kg soil-1) compared to the agroforestry (661 mg CO2-C kg soil-1) and cropped (483 mg CO2-C kg soil-1) soils regardless of WFPS and N rate. The highest cumulative CO2 production for the grass soil (1,279 mg CO2-C kg soil-1) occurred at 80% WFPS, and was approximately 2 to 2.6 times greater than the agroforestry and cropped soils at 80% WFPS. The results of this study indicate that conservation management practices, such as grass and grass-tree contour buffer strips, and landscape position affect soil surface CO2 production and accumulation of soil organic C that may influence soil C sequestration.
  • Authors:
    • Venterea, Rodney T.
    • Baker, John M.
    • Griffis, T. J.
    • Bavin, T. K.
    • Batjes, Niels
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 134
  • Issue: 3
  • Year: 2009
  • Summary: Agricultural ecosystems have been viewed with the potential to sequester atmospheric carbon dioxide (CO2) by increasing soil organic carbon (SOC) through reduced tillage and cover cropping practices. There remains considerable uncertainty, however, regarding the carbon (C) sink/source potential of these systems and few studies have examined C dynamics in conjunction with other important greenhouse gases. The objective of this study was to evaluate the impact of an alternative management scenario (reduced tillage and cover cropping) on ecosystem respiration (RE) and nitrous oxide (N2O) and methane (CH4) fluxes in a maize (Zea mays L.)/soybean (Glycine max L) rotation ecosystem in east-central Minnesota, United States. The control treatment was managed using fall tillage with a chisel plow in combination with a tandem disk, and the experimental treatment was managed using strip tillage and a winter rye (Secal cereale) cover crop. Over the two-year study period (2004-2005), cumulative RE was 222.7 g C m(-2) higher in the alternatively managed treatment as a result of increased decomposition of the cover crop residue. N2O fluxes were similar in both treatments during the 2004 growing season and were 100.1 mg N m(-2) higher in the conventional treatment during the 2005 growing season after nitrogen (N) fertilization. N fertilization and fertilizer type were the dominant factors controlling N2O fluxes in both treatments. CH4 fluxes were negligible in both treatments and often below the detection limit. Cumulative growing season N2O losses in the control and experimental treatments, which totalled 38.9 +/- 3.1 and 26.1 +/- 1.7 g C m(-2) when converted to CO2 equivalents, were comparable to the annual estimates of net ecosystem CO2 exchange in both treatments. This study further supports that N2O losses are an important component of the total greenhouse gas budget of agroecosystems. It also suggests that spring cover cropping, without residue removal, has limited C sequestration potential. The results from this study, however, may not necessarily represent equilibrium conditions in the experimental treatment. Rather, they are a measure of the transient response of the system after tillage conversion and cover crop addition. It is expected that the soil microbes will continue to adjust to the reduction in tillage and increased C inputs. Therefore, continued, long-term monitoring is needed to confirm whether the results are representative of equilibrium conditions. (C) 2009 Elsevier B.V. All rights reserved.
  • Authors:
    • Benbrook, C.
  • Source: Critical Issue Report: The First Thirteen Years
  • Year: 2009
  • Summary: Th is report explores the impact of the adoption of genetically engineered (GE) corn, soybean, and cotton on pesticide use in the United States, drawing principally on data from the United States Department of Agriculture. Th e most striking finding is that GE crops have been responsible for an increase of 383 million pounds of herbicide use in the U.S. over the first 13 years of commercial use of GE crops (1996-2008).
  • Authors:
    • Lal, R.
    • Blanco-Canqui, H.
  • Source: Soil Science Society of America Journal
  • Volume: 73
  • Issue: 2
  • Year: 2009
  • Summary: Franzluebbers (2009) is right about the need for a more intensive soil sampling, "repeated sampling with time,"and "stratified sampling" as well as for the use of multiple fields and collection of larger number of pseudoreplicates to overcome the high field variability in soil organic carbon (SOC) pools within each Major Land Resource Area (MLRA). The selected fields were representative of each MLRA in terms of soil type, slope, and management, but it is correct that a single soil would not capture all the variability in soil and management for the whole MLRA. This study was not intended to relate the data from the single soil to the whole MLRA but rather to emphasize the differences in SOC sequestration rates among the three management systems within each soil.
  • Authors:
    • Ma, B.
    • Strachan, I.
    • Zhou, X.
    • Mabood, F.
    • Almaraz, J.
    • Smith, D.
  • Source: Journal of Agronomy and Crop Science
  • Volume: 195
  • Issue: 5
  • Year: 2009
  • Summary: Climate change will alter temperature and rainfall patterns over North American agricultural regions and there will be a need to adapt crop production systems to the altered conditions. A set of field experiments were conducted in south-western Quebec, Canada, with soybean ( Glycine max L.), corn ( Zea mays L.), sorghum ( Sorghum bicolor L.) * sudangrass ( Sorghum sudanense Piper) hybrid and switchgrass ( Panicum virgatum L.) under two tillage and three nitrogen fertility regimes, to study their performance in three successive growing seasons (2001-2003), two of them with unusually warm and dry conditions. The annual crops were established in two tillage systems: conventional and no-till (NT). All crops except soybean were fertilized with three levels of nitrogen: corn - 0, 90 and 180 kg N ha -1, sorghum-sudangrass - 0, 75 and 150 kg N ha -1, switchgrass - 0, 30 and 60 kg N ha -1. The 2001 and 2002 seasons were hotter and drier than the 2003 season, which was the most favourable for crop growth. The capacity of the crops to yield in dry seasons was as follow: switchgrass > sorghum-sudangrass > corn > soybean. The corn and sorghum-sudangrass responses to nitrogen fertilizer were low in 2001 due to the combined effect of dry growing season and coarse soil texture. Soybean did not perform well under NT. Corn yielded better at the highest nitrogen fertilizer rate under NT when the early season was warmer than the normal. Our results show that switchgrass and sorghum-sudangrass could be an option in south-western Quebec if the frequency of hot and dry seasons increase in the future, because of climate change.
  • Authors:
    • Vyn, T.
    • McIntyre, L.
    • Brewer, J.
    • West, T.
    • Santini, J.
    • Boomsma, C.
  • Source: Soil & Tillage Research
  • Volume: 106
  • Issue: 2
  • Year: 2009
  • Summary: Research emphasizing slower plant growth and delayed maturity in continuous maize ( Zea mays L.), no-till (MM-NT) systems has often led to the conclusion that lower grain yields in this environment are associated with reduced plant heights. Yet prior research has shown that early-season and mature plants are not always shorter in MM-NT systems, suggesting that overall plant height may not be an accurate morphometric indicator of decreased yield in MM-NT environments. Given that plant-to-plant morpho-physiological uniformity is strongly associated with higher yield in maize, we hypothesized that greater plant height variability would provide a better agronomic explanation for yield loss in MM-NT environments than overall plant height reductions. This 14-year study primarily examined the effects of crop rotation {maize-soybean [ Glycine max (L.) Merr.] and continuous maize} and tillage system (no-till and moldboard plow) on the yield, 4-week plant population, and 4- and 8-week plant height and plant height variability of a single maize cultivar. Due to sizeable year-to-year variation, actual crop response means for the MM-NT; maize-soybean, no-till (MB-NT); and continuous maize, moldboard plow (MM-PL) treatment combinations were expressed relative to the accompanying means for the maize-soybean, moldboard plow (MB-PL) treatment. In numerous years, the MM-NT system exhibited reduced actual and relative yields and lower 4- and 8-week plant heights compared to the other treatment combinations. Both actual and relative 4- and 8-week plant height variability were rarely greatest for the MM-NT treatment, and in only a few years were actual and/or relative plant density lowest for this system. However, single-factor regression analyses between relative yield and the aforementioned relative agronomic measures revealed that a decline in relative MM-NT yield was most strongly associated with an increase in relative 4-week plant height variability. Multi-factor regression analyses between relative yield, relative 4-week plant height variability, and various weather parameters suggested that this strong inverse relationship was potentially a manifestation of (i) non-uniform germination, emergence, and early seedling growth and (ii) later-season intra-specific competition. Regression analyses between relative 4-week plant height variability and various weather parameters suggested that phenomenon (i) was potentially promoted by cool and moist or warm and dry pre-plant weather conditions while phenomenon (ii) was possibly encouraged by low precipitation and/or high temperatures during rapid stem elongation. While MM-NT systems should be managed to limit plant density reductions and minimize growth and developmental delays, increased focus should be placed on minimizing the occurrence of plant-to-plant variability in these environments.
  • Authors:
    • Azevedo, W.
    • Pereira, H.
    • Reis, E.
    • Souza, E.
    • Carneiro, M.
  • Source: REVISTA BRASILEIRA DE CIENCIA DO SOLO
  • Volume: 33
  • Issue: 1
  • Year: 2009
  • Summary: This study investigated the effects of tillage systems and soil use on the physical, chemical and biological properties of a clayey dystrophic Red Latosol (Oxisol) and a sandy Neosol (Entisol). The treatments for the Oxisol consisted of: native savanna, pasture, conventional tillage, no-tillage with turnip and with forage sorghum as cover crop. For the Entisol: native savanna, native pasture, integrated crop-livestock, cultivated pasture, no-tillage with soyabean and maize in the summer. Soil samples were collected from a depth of 0-10 cm, in a clayey dystrophic Oxisol and a sandy Entisol in a savanna ecosystem, near the Parque Nacional das Emas in Goias, Brazil. Treatments were arranged in a completely randomized design, in 5 plots of 150 m 2, where 10 sub-samples were collected randomly. Chemical, physical and biological analyses were carried out at a soil laboratory. In the Entisol, tillage influenced the soil density, total pore volume, macroporosity and penetration resistance. In the Oxisol, tillage induced variations in soil bulk density, macroporosity and penetration resistance. Small variations in chemical properties were observed in both soils, with higher potential acidity and lower exchangeable cation and phosphorus concentrations. The soil biological properties were influenced by tillage, and were most affected in systems with more anthropic action. In the canonical data analysis the greater weighting coefficient of the physical properties in the canonic variables demonstrated that these were the least important. The contribution of the separate soil properties to evaluate soil quality was minor, but the most sustainable management systems could be defined by multivariate analysis.