- Authors:
- Wander, M.
- Marriott, E. E.
- Source: Soil Biology and Biochemistry
- Volume: 38
- Issue: 7
- Year: 2006
- Authors:
- Source: Ecosystems
- Volume: 9
- Issue: 8
- Year: 2006
- Summary: Since the domestication of plant and animal species around 10,000 years ago, cultivation and animal husbandry have been major components of global change. Agricultural activities such as tillage, fertilization, and biomass alteration lead to fundamental changes in the pools and fluxes of carbon (C), nitrogen (N), and phosphorus (P) that originally existed in native ecosystems. Land is often taken out of agricultural production for economic, social, or biological reasons, and the ability to predict the biogeochemical trajectory of this land is important to our understanding of ecosystem development and our projections of food security for the future. Tillage generally decreases soil organic matter (SOM) due to erosion and disruption of the physical, biochemical, and chemical mechanisms of SOM stabilization, but SOM can generally reaccumulate after the cessation of cultivation. The use of organic amendments causes increases in SOM on agricultural fields that can last for centuries to millennia after the termination of applications, although the locations that provide the organic amendments are concurrently depleted. The legacy of agriculture is therefore highly variable on decadal to millennial time scales and depends on the specific management practices that are followed during the agricultural period. State factors such as climate and parent material (particularly clay content and mineralogy) modify ecosystem processes such that they may be useful predictors of rates of postagricultural biogeochemical change. In addition to accurate biogeochemical budgets of postagricultural systems, ecosystem models that more explicitly incorporate mechanisms of SOM loss and formation with agricultural practices will be helpful. Developing this predictive capacity will aid in ecological restoration efforts and improve the management of modern agroecosystems as demands on agriculture become more pressing.
- Authors:
- Baker, J. M.
- Molina, J. A. E.
- Allmaras, R. R.
- Clapp, C. E.
- Dolan, M. S.
- Source: Soil & Tillage Research
- Volume: 89
- Issue: 2
- Year: 2006
- Summary: Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0-20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20-25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha-1, respectively) than with NT (13 and 1.2 Mg SOC and N ha-1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.
- Authors:
- McLaughlin, N. B.
- Calder, W.
- Welacky, T. W.
- Tan, C. S.
- Reynolds, W. D.
- Drury, C. F.
- Source: Soil Science Society of America Journal
- Volume: 70
- Issue: 2
- Year: 2006
- Summary: Innovative management practices are required to increase the efficiency of N fertilizer usage and to reduce nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural soils. The objectives of this study were to evaluate the feasibility of using conservation tillage and N fertilizer placement depth to reduce N2O and CO2 emissions associated with corn (Zea mays L.) production on clay loam soils in Eastern Canada. A 3-yr field study was established on a wheat (Triticum aestivum L.)-corn-soybean [Glycine max (L.) Merr.] rotation with each phase of the rotation present every year. Investigations were focused on the corn phase of the rotation. The tillage treatments following winter wheat included fall moldboard plow tillage (15 cm depth), fall zone-tillage (21 cm width, 15 cm depth), and no-tillage. The N placement treatments were "shallow" placement of sidedress N (2-cm depth) and "deep" placement of sidedress N (10-cm depth). Nitrous oxide emissions were measured 53 times and CO2 emissions were measured 43 times over three growing seasons using field-based sampling chambers. There was a significant tillage and N placement interaction on N2O emissions. Averaged over all three tillage systems and site-years, N2O emissions from shallow N placement (2.83 kg N ha-1 yr-1) were 26% lower than deep N placement (3.83 kg N ha-1 yr-1). The N2O emissions were similar among the tillage treatments when N was placed in the soil at a shallow depth. However, when N was placed deeper in the soil (10 cm), the 3-yr average N2O emissions from zone-tillage (2.98 kg N ha-1 yr-1) were 20% lower than from no-tillage (3.71 kg N ha-1 yr-1) and 38% lower than those from moldboard plow tillage (4.81 kg N ha-1 yr-1). Tillage type and N placement depth did not affect CO2 emissions (overall average = 5.80 Mg C ha-1 yr-1). Hence, zone-tillage and shallow N placement depth reduced N2O emissions without affecting CO2 emissions.
- Authors:
- Beegle, D. B.
- Duiker, S. W.
- Source: Soil & Tillage Research
- Volume: 88
- Issue: 1-2
- Year: 2006
- Summary: In permanent no-till (NT), soil nutrients are no longer mixed into the topsoil as with moldboard plow/disking (MD), whereas chisel/disking (CD) does limited mixing. Surface broadcast and/or banded nutrient applications may result in high and low fertility zones in permanent NT, with possible implications for soil sampling and nutrient placement.We investigated effects of 25 years of continuous NT, CD and MD with corn planted in the same row locations on organic matter (SOM), pH-H2O and Mehlich-3 extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). Vertical distribution at 0-5, 5-10 and 10-15 cm depths was measured as well as horizontal distributions across corn rows. We observed higher SOM and P in NT and CD than in MD in the 0-15 cm layer. SOM content was greatest in the top 5 cm in NT, but declined sharply with depth. SOM content in CD was not as high at the surface as in NT, but did not decline as fast as in NT. SOM was uniform but low throughout the 0-15 cm depth of MD. In all tillage systems, SOM did not vary across rows. Soil pH was higher in the 0-5 cm layer of NT than the deeper layers but the reverse was true in the CD or MD treatments. Concentrations of P, K and Ca were higher in the surface 0-5 cm than 10-15 cm depth of all tillage systems, but most strikingly in NT and CD. Starter fertilizer injection resulted in higher P and lower pH in the injection zone of all tillage treatments, but most notably in NT. The pH was depressed under the band of side-dressed nitrogen with all tillage systems. Potassium accumulated in the rows of the previous crop, probably because it leached from crop residue that accumulated there. Tillage did not affect Mg distribution. Optimal nutrient management in NT should take account of horizontal and vertical nutrient and pH distributions. Samples in long-term NT could potentially be taken to a shallower depth if calibration curves are available. To avoid underestimating P and K availability or overestimate lime needs, high P or decreased pH bands should be avoided, as well as crop rows. Possibilities to reduce P and K applications with banding need more investigation. Results show the importance of regular liming in NT to maintain surface pH in the optimum range, but also show that lime does not have to be incorporated.
- Authors:
- Robertson, G. P.
- Parr, S.
- Loecke, T. D.
- Grandy, A. S.
- Source: Journal of Environmental Quality
- Volume: 35
- Issue: 4
- Year: 2006
- Summary: No-till cropping can increase soil C stocks and aggregation but patterns of long-term changes in N2O emissions, soil N availability, and crop yields still need to be resolved. We measured soil C accumulation, aggregation, soil water, N2O emissions, soil inorganic N, and crop yields in till and no-till corn-soybean-wheat rotations between 1989 and 2002 in southwestern Michigan and investigated whether tillage effects varied over time or by crop. Mean annual NO3- concentrations in no-till were significantly less than in conventional till in three of six corn years and during one year of wheat production. Yields were similar in each system for all 14 years but three, during which yields were higher in no-till, indicating that lower soil NO3- concentrations did not result in lower yields. Carbon accumulated in no-till soils at a rate of 26 g C m-2 yr-1 over 12 years at the 0- to 5-cm soil depth. Average nitrous oxide emissions were similar in till (3.27 {+/-} 0.52 g N ha d-1) and no-till (3.63 {+/-} 0.53 g N ha d-1) systems and were sufficient to offset 56 to 61% of the reduction in CO2 equivalents associated with no-till C sequestration. After controlling for rotation and environmental effects by normalizing treatment differences between till and no-till systems we found no significant trends in soil N, N2O emissions, or yields through time. In our sandy loam soils, no-till cropping enhances C storage, aggregation, and associated environmental processes with no significant ecological or yield tradeoffs.
- Authors:
- Source: Integrated Crop Management
- Volume: IC-496
- Issue: 11
- Year: 2006
- Authors:
- Hunt, P. G.
- Novak, J. M.
- Frederick, J. R.
- Bauer, P. J.
- Source: Soil & Tillage Research
- Volume: 90
- Issue: 1-2
- Year: 2006
- Summary: Tillage affects the ability of coarse-textured soils of the southeastern USA to sequester C. Our objectives were to compare tillage methods for soil CO2 flux, and determine if chemical or physical properties after 25 years of conventional or conservation tillage correlated with flux rates. Data were collected for several weeks during June and July in 2003, October and November in 2003, and April to July in 2004 from a tillage study established in 1978 on a Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults). Conventional tillage consisted of disking to a depth of approximately 15Â cm followed by smoothing with an S-tined harrow equipped with rolling baskets. Conservation tillage consisted of direct seeding into surface residues. Flux rates in conservation tillage averaged 0.84 g CO2 m-2 h-1 in Summer 2003, 0.36 g CO2 m-2 h-1 in Fall 2003, 0.46 g CO2 m-2 h-1 in Spring 2004, and 0.86 g CO2 m-2 h-1 in Summer 2004. Flux rates from conventional tillage were greater for most measurement times. Conversely, water content of the surface soil layer (6.5 cm) was almost always higher with conservation tillage. Soil CO2 flux was highly correlated with soil water content only in conventional tillage. In conservation tillage, no significant correlations occurred between soil CO2 flux and soil N, C, C:N ratio, pH, bulk density, sand fraction, or clay fraction of the surface 7.5 cm. In conventional tillage, sand fraction was positively correlated, while bulk density and clay fraction were negatively correlated with soil CO2 flux rate, but only when the soil was moist. Long-term conservation tillage management resulted in more uniform within- and across-season soil CO2 flux rates that were less affected by precipitation events.
- Authors:
- Derksen, D.
- May, W.
- Johnston, A.
- Clayton, G.
- Lafond, G.
- Stevenson, F.
- Source: Canadian Journal of Plant Science
- Volume: 86
- Issue: 2
- Year: 2006
- Summary: Surface residues and standing stubble protect soil against erosion and mitigate against crop water deficits by conserving additional moisture. However, residues and stubble can also present a dilemma for producers practising no-till in terms of nitrogen (N) fertilizer management and row spacing. The objective of this research was to determine how row spacing, N management using urea and two rates of post-emergent herbicide (66 and 100% of recommended) affect spring wheat establishment and plant development. The study was conducted using a no-till system and a canola-spring wheat cropping system at three locations over a 3-yr period. The N management and row spacing treatments were (1) 23-cm row spacing with fall banded N on 30 cm; (2) 23-cm row spacing with spring banded N on 30 cm; (3) 30-cm row spacing with the N side-banded; (4) 23-cm row spacing with the N side-banded; and (5) sweep on 23-cm spacing with seed and fertilizer scattered over a 20-cm width. Herbicide rates did not affect wheat development. Planting depth was greater for the sweep treatment, but only by 6 mm. Plant densities were at the low end of the optimal range of 200-250 plants m -2 for all treatments and were least for the 30 cm row spacing. Average frequencies for tillers T0, T1, T2 and T3 were 20, 81 61 and 10%, respectively. Fall and spring band treatments resulted in lower tiller frequencies than the sweep treatment, with intermediate levels for the side-band treatments. Tiller frequencies were identical between the 23-cm and 30-cm row spacings with N side-banded. Greater tiller frequencies for the sweep treatment likely resulted from the greater spread of seed, reducing inter-plant competition and closer proximity of the seed to fertilizer N. Spike density was not affected by N management. Expected spike density, calculated from tiller frequency and plant density data, was within 1% of the actual spikes recorded, when averaged over treatments. This means that tiller frequencies at the 5 to 5.5 leaf stage are a good predictor of expected spike density. Wider row spacings did not affect plant and tiller development but applying N fertilizer at time of seeding provided better spring wheat tiller development.
- Authors:
- Avila, A.
- Spera, S.
- Lhamby, J.
- Santos, H.
- Source: Bragantia
- Volume: 65
- Issue: 4
- Year: 2006
- Summary: The effects of soil management system and winter crop rotation on wheat yield and root diseases were assessed. Four soil management systems: (1) no-tillage, minimum tillage, conventional tillage using a disc plough plus disc harrow, and conventional tillage using a mouldboard plough plus disc harrow; and 3 crop rotation systems: wheat/soyabean, wheat/soyabean and common vetch [ Vicia sativa]/maize or sorghum ( Sorghum bicolor), and wheat/soyabean, white oat/soyabean and common vetch/maize or sorghum, were compared. The yield and plant height of wheat grown under no-tillage and minimum tillage were higher than the yield of wheat grown under conventional soil tillage using either disk plough or mouldboard plough. Weight of 1000 kernels was highest in the no-tillage. Crop rotation was efficient in reducing root diseases and in increasing wheat yield. The lowest wheat yield, grain weight per plant, 1000-kernel weight and test weight were obtained in monoculture (wheat/soyabean).