- Authors:
- Figueroa-Viramontes, R.
- Vazquez-Vazquez, C.
- Salazar-Sosa, E.
- Lopez-Martinez, J. D.
- Berumen-Padilla, S.
- Martinez-Rubin, E.
- Source: Agrofaz: publicación semestral de investigación cientÃfica, ISSN 1665-8892, Vol. 3, Nº. 1, 2003
or
Phyton REVISTA INTERNACIONAL DE BOTÃNICA EXPERIMENTAL INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY
- Volume: 2004
- Year: 2004
- Summary: Taking into consideration that potential evapotranspiration normally exceeds the growing season rainfall and that a water shortage can occur unless a reserve of soil water is stored before the crop is planted, it can be concluded that the amount of stored soil water at sowing time is a critical factor in the success of dryland cropping systems. The main aim of this investigation was to know if interaction chi 2 test is a valuable tool, when taking into account stored soil (0-60 cm depth) water at sowing time and maize grain yield, in making decision for sowing or not sowing at a given time. Data on the amount of soil water at sowing time and maize grain yield from four experiments carried out during 2001 and 2002 at the Ejido Francisco Villa, Lerdo, Durango, Mexico were used to run the interaction chi 2 tests. For a minimum maize yield of 1000 kg ha -1, the following level of stored soil water was defined as critical: 8.34 cm for cv. 'Blanco Hualauises' and cv. 'H-412'. The interaction chi 2 test is a good tool to determine soil water critical levels at the sowing time of maize to ensure success in the present dryland cropping system.
- Authors:
- Source: Zashchita i Karantin Rastenii
- Issue: 12
- Year: 2004
- Summary: Wild oat (Avena fatua) is widely spread in cereals, particularly wheat, barley and oat, in many regions of Russia, causing up to 40% losses of crops, and a decrease of quality of seed material, and food and feed grains. Investigations carried out in the Orlov region, European Russia, revealed significant infestations of agricultural crops, particularly winter and spring wheat, and pea, with wild oat. Data are tabulated on herbicides effective against Poaceae weeds including A. fatua in sugarbeet, sunflower, soyabean, rape, potato and vegetable crops. Strategies for prevention and control of A. fatua are discussed. Data are also tabulated on herbicides showing activity against Poaceae and dicotyledonous weeds, as well as A. sativa in maize, sugarbeet, sunflower, soyabean, rape, potato and vegetable crops.
- Authors:
- Sanders, D. C.
- Paullier, J.
- Maeso, D.
- Arboleda, J.
- Gilsanz, J. C.
- Hoyt, G. D.
- Behayout, E.
- Lavandera, C.
- Source: Proc. XXVI IHC â Sustainability of Horticultural Systems
Eds. L. Bertschinger and J.D. Anderson
Acta Horticulturae 638, ISHS 2004
- Issue: 638
- Year: 2004
- Summary: Seven rotational systems were evaluated for vegetable crops in USA and Uruguay. Rotational systems that include both winter and summer cover crops and vegetable crops were used. Treatments comprised: continuous cropping system, T1; multiple vegetable system, T2; green manure system, T3; chicken manure system, T4; fallow system, T5; strip tillage system, T6; and no-tillage system, T7. The crops used were sweet potato, squash, oat or triticale winter cover crop, sorghum or Sudan grass summer cover crop, sweetcorn, garlic, carrot with chicken manure and fallow. Different insects, diseases and weed infestations were recorded in the systems. The study began in spring 1999 in Uruguay and spring 2000 in North Carolina, USA. This paper reports only results from Uruguay. The yields obtained were good compared to the national average in most cases. The average yield is 7 t/ha for sweet potato and 3.5 t/ha for garlic. T6 had the highest soil macrofauna (70 worms/m 2 compared to 4.2 in T1). Soil biomass was sampled for four times: 13 April, 26 May, 17 August and 08 November 2000. T7 system had greater soil biomass during the period of observation than T1 or T4 systems. T6 and T7 treatments had the lowest nitrate levels in the soil among all treatments. T4 was enough for garlic growth. T6, T7 and T4 systems had less sclerotia (from Sclerotium rolfsii [ Corticium rolfsii]) than T1 and T2 systems.
- Authors:
- Australia, Australian Bureau of Agricultural and Resource Economics
- Source: Australian Bureau of Agricultural and Resource Economics
- Issue: 132
- Year: 2004
- Summary: An overview of crop production in Australia in 2004 is presented. The crop conditions in New South Wales, Victoria, Queensland, Western Australia and South Australia are described. Cropping areas and yields of winter crops (wheat, barley, oats, rape, lupins, field peas, chickpea, faba beans, lentils, triticale, safflower and vetch) and summer crops (cottonseed, sorghum, rice, maize, sunflowers, soyabeans, groundnuts, mung beans and navy beans) are compared with previous years. Various crop production, precipitation and pricing data are also tabulated.
- Authors:
- Thottappilly, G.
- Loebenstein, G.
- Source: Virus and virus-like diseases of major crops in developing countries
- Issue: xlvii + 800 pp
- Year: 2003
- Summary: This book is a comprehensive up-to-date treatise on virus and virus-like diseases of the major crops (cassava, potatoes, sweet potato, yam, rice, maize, sorghum, other cereal crops, cowpea, soyabean, groundnut, common bean, other legumes, banana, pawpaw, cocoa, sugarcane, coconut, palm trees, citrus, tomato, cucurbits, other vegetables, cotton, sunflower and spices) in developing countries and their detection, isolation, biological and molecular characterization, transmission and possible approaches for their control. Also included are chapters on the general impact of these diseases, epidemiology, quarantine and technology transfer.
- Authors:
- Kasha, K. J.
- Maluszynski, M.
- Forster, B. P.
- Szarejko, I.
- Source: Doubled haploid production in crop plants: a manual
- Year: 2003
- Summary: This manual presents a set of protocols for the production of doubled haploid plants in 22 major crops species including 4 tree species, and includes protocols from different germplasm of the same species. The crops covered include barley, wheat, maize, rice, triticale, rye, oats, durum wheat, timothy grass ( Phleum pratense), ryegrass ( Lolium), rape, broccoli, tobacco, potato, flax/linseed, sugarbeet, asparagus, onion, apple, poplar, cork oak ( Quercus suber), and citrus. All steps of doubled haploid production are detailed from donor plant growth conditions, through in vitro procedures, media composition and preparation, to regeneration of haploid plants and chromosome doubling methods. The practical protocols are supplemented with a list of published protocols for other crop plants, and separate chapters deal with major application of doubled haploids in breeding, mutant production, transgenesis, genetic mapping and genomics.
- Authors:
- Ostergard, H.
- Pedersen, S.
- Kjellsson, G.
- Holm, P. B.
- Gylling, M.
- Buus, M.
- Boelt, B.
- Andersen, S. B.
- Tolstrup, K.
- Mikkelsen, S. A.
- Source: DIAS Report, Plant Production
- Issue: 94
- Year: 2003
- Summary: The paper focuses on the possible sources of dispersal (cross pollination, seed dispersal, vegetative dispersal, dispersal by farming machinery, dispersal during handling and transport) from genetically modified crop production to conventional and organic production, the extent of dispersal and the need for control measures, and the possible control measures for ensuring the co-existence of genetically modified production with conventional and organic production systems. Specific sections are provided on the crops currently genetically modified in Denmark or likely to be within the next few years (oilseed rape, maize, beet, potatoes, barley, wheat, triticale, oats, rye, forage and amenity grasses, grassland legumes, field peas, faba beans and lupins, and vegetable seeds). Brief discussions on the legislation, seed production, monitoring and analytical methods used, and measures to ensure crop purity (such as reducing pollen dispersal, reducing seed dispersal, adopting cultural methods reducing pollen and seed dispersal) are also presented.
- Authors:
- Huang, D. L.
- Dai, Z. Y.
- Liang, G. W.
- Pang, X. F.
- Yang, Y. Z.
- Source: Journal of Yangzhou University, Agricultural and Life Sciences Edition
Issue: 2
- Volume: 24
- Issue: 2
- Year: 2003
- Summary: The development of cotton bollworm (H. armigera) fed with different host foods was investigated. Higher values for pupal weight and eggs per female were recorded for the cotton bollworms fed with pea and soyabean leaves, compared with those fed with aubergine fruit and groundnut leaf. The rate larval development was highest with pea leaf, followed by maize fruits, and lowest for cotton leaf, flower, bud and boll. Based on values of the index of population trend, the preference of the cotton bollworm to different host foods were as follows: pea > soyabean > maize > Chinese sorghum > cotton > groundnut > aubergine. The results of a study of the dynamics of the cotton bollworm population in a cotton field in China are presented.
- Authors:
- Source: Agricultural trade and policy in China: issues, analysis and implications
- Year: 2003
- Summary: This chapter assesses the protection and comparative advantage of China's major agricultural crops in six regions, using a modified Policy Analysis Matrix and 1997-2000 data. The following commodities are considered: early indica rice, late indica rice, japonica rice, wheat, maize, sorghum, soyabean, rapeseed, cotton, tobacco, sugarcane, and a subset of fruits and vegetables. The results suggest that, with the exception of high quality rice, the production of grains and oilseeds tends to suffer from a lack of comparative advantage over other crops in China, such as fruit and vegetables, tobacco and cotton. Further, it is concluded that grain self-sufficiency policies reduce allocative efficiency several-fold.
- Authors:
- Whitehead, W. F.
- Singh, B. P.
- Sainju, U. M.
- Source: Soil & Tillage Research
- Volume: 63
- Issue: 3-4
- Year: 2002
- Summary: Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha-1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha-1 for tomato and 80 kg N ha-1 for eggplant)) and FN (180 kg N ha-1 for tomato and 160 kg N ha-1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha-1 in hairy vetch to 3704 kg ha-1 in rye in 1999 and N concentration ranged from 77 kg ha-1 in rye in 1996 to 299 kg ha-1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5-24.9 vs. 19.9-21.4 Mg ha-1 and 1.92-2.05 vs. 1.58-1.76 Mg ha-1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5-18.4 vs. 16.5 Mg ha-1 and 1.33-1.43 vs. 1.31 Mg ha-1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8-16% in NT and 15-25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2-6% with HN and FN, and 6-18% with the control. With rye, organic C and N increased by 3-4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.