• Authors:
    • Dellow, J. J.
    • Francis, R. J.
    • Mullen, C. L.
    • McRae, F. J.
  • Source: Weed control in winter crops 2003
  • Year: 2003
  • Summary: This publication, intended for use by New South Wales Agriculture (New South Wales, Australia), presents some guidelines on chemical weed control in fallows, wheat, barley, oats, rye, triticale, rape, safflower, lentil, linseed, lupin, chickpea, faba bean and field pea. Tabulated data on herbicides, along with application rates suggested for particular weed species, are included.
  • Authors:
    • Jayas, D. S.
    • Visen, N. S.
    • Paliwal, J.
    • White, N. D. G.
  • Source: Biosystems Engineering
  • Volume: 85
  • Issue: 1
  • Year: 2003
  • Summary: Algorithms were written to extract a total of 230 features (51 morphological, 123 colour, and 56 textural) from the high-resolution images of kernels of five grain types [barley, Canada Western Amber Durum (CWAD) wheat, Canada Western Red Spring (CWRS) wheat, oats, and rye] and five broad categories of dockage constituents [broken wheat kernels, chaff, buckwheat, wheat spikelets (one to three wheat kernels inside husk), and canola (rapeseed with low erucic acid content in the oil and low glucosinolate content in the meal)]. Different feature models, viz. morphological, colour, texture, and a combination of the three, were tested for their classification performances using a neural network classifier. Kernels and dockage particles with well-defined characteristics (e.g. CWRS wheat, buckwheat, and canola) showed near-perfect classification whereas particles with irregular and undefined features (e.g. chaff and wheat spikelets) were classified with accuracies of around 90%. The similarities in shape and size of some of the particles of chaff and wheat spikelets with the kernels of barley and oats affected the classification accuracies of the latter, adversely. (C) 2003 Silsoe Research Institute. All rights reserved. Published by Elsevier Science Ltd.
  • Authors:
    • Ostergard, H.
    • Pedersen, S.
    • Kjellsson, G.
    • Holm, P. B.
    • Gylling, M.
    • Buus, M.
    • Boelt, B.
    • Andersen, S. B.
    • Tolstrup, K.
    • Mikkelsen, S. A.
  • Source: DIAS Report, Plant Production
  • Issue: 94
  • Year: 2003
  • Summary: The paper focuses on the possible sources of dispersal (cross pollination, seed dispersal, vegetative dispersal, dispersal by farming machinery, dispersal during handling and transport) from genetically modified crop production to conventional and organic production, the extent of dispersal and the need for control measures, and the possible control measures for ensuring the co-existence of genetically modified production with conventional and organic production systems. Specific sections are provided on the crops currently genetically modified in Denmark or likely to be within the next few years (oilseed rape, maize, beet, potatoes, barley, wheat, triticale, oats, rye, forage and amenity grasses, grassland legumes, field peas, faba beans and lupins, and vegetable seeds). Brief discussions on the legislation, seed production, monitoring and analytical methods used, and measures to ensure crop purity (such as reducing pollen dispersal, reducing seed dispersal, adopting cultural methods reducing pollen and seed dispersal) are also presented.
  • Authors:
    • UK, National Institute of Agricultural Botany (NIAB)
  • Source: Pocket guide to varieties of cereals, oilseeds & pulses for autumn 2003
  • Year: 2003
  • Summary: This edition presents information on the autumn sown varieties of wheat, barley, oats, triticale, rye, durum wheat, oilseed rape, linseed, peas and beans. Individual information on each variety is given, including variety notes, yield performance, relative ranking position in different environments and a summary of the important character ratings from the Recommended Lists.
  • Authors:
    • Abramov, A. F.
  • Source: Kormoproizvodstvo
  • Issue: 7
  • Year: 2003
  • Summary: On the basis of biochemical analyses, the types of fodder and the fodder plants that can be produced under the severe environmental conditions of Yakutia in north-east Russia are discussed. Suitable species include oats, barley, rye, sunflower, rape, peas, lucerne and sweet clover [ Melilotus], while the fodders that can be produced include silage, haylage, meal produced from the green matter of cereals and grasses, combined fodders and fodder mixtures.
  • Authors:
    • Whitehead, W. F.
    • Singh, B. P.
    • Sainju, U. M.
  • Source: Soil & Tillage Research
  • Volume: 63
  • Issue: 3-4
  • Year: 2002
  • Summary: Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha-1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha-1 for tomato and 80 kg N ha-1 for eggplant)) and FN (180 kg N ha-1 for tomato and 160 kg N ha-1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha-1 in hairy vetch to 3704 kg ha-1 in rye in 1999 and N concentration ranged from 77 kg ha-1 in rye in 1996 to 299 kg ha-1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5-24.9 vs. 19.9-21.4 Mg ha-1 and 1.92-2.05 vs. 1.58-1.76 Mg ha-1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5-18.4 vs. 16.5 Mg ha-1 and 1.33-1.43 vs. 1.31 Mg ha-1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8-16% in NT and 15-25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2-6% with HN and FN, and 6-18% with the control. With rye, organic C and N increased by 3-4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.
  • Authors:
    • Jellum, E. J.
    • Kuo, S.
  • Source: Agronomy Journal
  • Volume: 94
  • Issue: 3
  • Year: 2002
  • Summary: Removing cover crop top growth in the spring for forage or to prevent incorporation problems is one management option. The effects of this residue management on soil quality and productivity need to be determined. This study, conducted from 1994 to 1998 at Puyallup, WA, determined effects of various winter cover crops and residue management on soil N availability, soil C and N, and corn (Zea mays L.) yield. Included in the study were monocultures of rye (Secale cereale L.), ryegrass (Lolium multiflorum Lam), and vetch (Vicia villosa Roth subsp. villosa) and biculture of vetch and rye or ryegrass. Each year, the cover crops were seeded in the fall and incorporated into, or removed from, the soil in the spring. Average top-growth biomass was higher for the bicultures than for the monocultures. Total N accumulation was generally greatest under vetch, followed by the bicultures, and lowest for the monocultured rye or ryegrass. Whereas removing top growth of monocultured vetch or bicultures depressed presidedress soil NO3-N (Ni), the effect was generally not found for monocultured rye or ryegrass. Corn yields were affected by amounts of Ni and N fertilizer applied (r2 > 0.789), irrespective of cover crop species and residue management. Removing top growth of the cover crops limited residue C input and reduced soil organic C and N after 5 yr. Soil organic C and N accumulation, as well as increasing soil C sequestration to reduce CO2 release into atmosphere, should be considered when deciding which residue management option to choose.
  • Authors:
    • Grove, J. H.
    • Dí­az-Zorita, M.
  • Source: Soil & Tillage Research
  • Volume: 66
  • Issue: 2
  • Year: 2002
  • Summary: Surface accumulation of soil organic carbon (SOC) under conservation tillage has significant effects on stratification of other nutrients, on crop productivity and in ameliorating the greenhouse effect via atmospheric CO, sequestration. A measure of SOC stratification relative to deeper soil layers has been proposed as a soil quality index. Our objective was to determine the effects of the duration of tillage practices upon the SOC and extractable P distribution with depth in Maury silt loams (Typic Paleudalfs) at similar levels of corn (Zea mays L.) productivity without P fertilization. Soil samples (0-20.0 cm in 2.5 cm increments) were collected under moldboard tillage (MT), chisel tillage (CT) and no-tillage (NT) and in surrounding tall fescue (Festuca arundinacea L.) sods selected from three tillage experiments (1-2-, 8- and 29-year durations) in Kentucky. SOC stratification was greater under conservation tillage (CT and NT) and sods than under MT. SOC and soil-test-extractable P stratification were positively related. Increasing the duration under NT caused the thickness of C stratification to increase. In NT soils, C stratification ratio (CSR) approached CSR in the nearby long-term sods with time. Conservation tillage rapidly promoted the occurrence of CSR greater than 2 while MT always resulted in values lower than 2. The rapid initial change in CSR suggests characterization of thin soil layers (i.e. 2.5 cm depth increments) is desirable under conservation tillage. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Authors:
    • Tonkin, C. J.
    • Francis, R. J.
    • Dellow, J. J.
    • Mullen, C. L.
  • Source: Weed control in winter crops 2002
  • Year: 2002
  • Summary: This bulletin provides a list of the most important weeds of winter crops, and identifies the herbicides that should be used for optimum weed control in fallows, wheat, barley, oat, rye, triticale, rape, sunflower, lentil, linseed, lupin, chickpea, faba bean and field pea.
  • Authors:
    • UK, National Institute of Agricultural Botany (NIAB)
  • Source: Pocket guide to varieties of cereals, oilseeds & pulses for autumn 2002
  • Year: 2002
  • Summary: This edition presents information on the autumn sown varieties of wheat, barley, oats, triticale, rye, durum wheat, oilseed rape, linseed, peas, lupins and beans. Individual information on each variety is given, including variety notes, yield performance, relative ranking position in different environments and a summary of the important character ratings from the Recommended Lists.