• Authors:
    • Saggin, A.
    • Santos, D.
    • Gatiboni, L.
    • Brunetto, G.
    • Kaminski, J.
  • Source: REVISTA BRASILEIRA DE CIENCIA DO SOLO
  • Volume: 29
  • Issue: 4
  • Year: 2005
  • Summary: The critical potassium level for fertilizer recommendation for soils in the State of Rio Grande do Sul (RS) and Santa Catarina (SC), Brazil, with cation exchange capacity (CEC) from 5.1 to 15 cmol c dm -3 is 60 mg dm -3. However, until 2002 concentrations of 80 mg dm -3 had been used. Two experiments were carried out on an experimental area of the Department of Soil Science of the Federal University of Santa Maria (RS-Brazil) on a sandy Typic Hapludalf under no-tillage. The objective of the study was to evaluate critical potassium levels for fertilizer recommendations for soyabean, maize and sorghum. The first experiment was set up in 1991 and carried out until 2002. The main plot treatments were the application of 0, 60, 120, and 180 kg ha -1 K 2O every four years, and split-plot treatments were the reapplication of 60 kg of K 2O in 0, 1, 2, or 3 years. The second experiment was carried out from 1995 to 2002 and the treatments were 0, 50, 100, 150, and 200 kg ha -1 year -1 K 2O. Results showed that the critical potassium level extracted with Mehlich-1 solution is 42 mg dm -3. When using the critical potassium level established by the Regional Soil Chemistry and Fertility Commission in these soils it is possible to reach over 95% of the maximum crop yield.
  • Authors:
    • Sweeney, D.
    • Kelley, K.
  • Source: Agronomy Journal
  • Volume: 97
  • Issue: 3
  • Year: 2005
  • Summary: In the eastern Great Plains, winter wheat ( Triticum aestivum L.) is often rotated with other crops to diversify cropping systems. In these multicropping systems, wheat typically is planted with conservation tillage methods, but previous crop residues influence fertilizer N management. This field study was conducted from 1992 through 2001 in southeastern Kansas on a Parsons silt loam soil (fine, mixed, thermic, Mollic Albaqualf). The objectives were to determine effects and interactions of previous crop {grain sorghum [ Sorghum bicolor (L.) Moench] and soybean [ Glycine max (L.) Merr.]}, tillage system [reduced tillage (RT) and no-tillage (NT)], N rate (67 and 134 kg ha -1), and preplant placement (surface-broadcast and subsurface-knife) of urea ammonium nitrate solution (UAN, 280 g kg -1) on wheat grain yield, yield components, and plant N uptake in a 2-yr cropping rotation. Wheat yields averaged 3.39 Mg ha -1 following soybean compared with 2.90 Mg ha -1 following grain sorghum. Tillage effects on grain yield were smaller than other treatment factors, averaging 3.23 Mg ha -1 for RT and 3.06 Mg ha -1 for NT. Grain yields were greatest in all cropping systems for the high-N-rate subsurface-knife treatment. Plant N uptake responses indicated that grain yield differences were primarily related to greater immobilization of both fertilizer and soil N following grain sorghum, compared with soybean, and to better utilization of subsurface-knifed N than surface-broadcast N. Results indicate that wheat yield potential is more strongly influenced by previous crop, fertilizer N rate, and N placement method than tillage system.
  • Authors:
    • Rodrigues, L.
    • Lazarini, E.
    • Leal, A.
    • Muraishi, C.
    • Gomes Junior, F.
  • Source: Acta Scientiarum Agronomy
  • Volume: 27
  • Issue: 2
  • Year: 2005
  • Summary: This experiment aimed to verify the reaction of soyabean and maize cultures sown 38 days near or after chemical or mechanical handling of different soil coverings. The experiment was carried out at the experimental Station of Unesp, Ilha Solteira Campus, in the municipality of Selviria, state of Mato Grosso do Sul, Brazil, during the agricultural year of 2001/02. The covering cultures used were: rice, sorghum, Brachiaria decumbens [ Urochloa decumbens] and B. brizantha [ U. brizantha], millet [ Pennisetum glaucum] and Eleusine coracana. It was observed that the covering cultures showed good environment adaptation in dry mass production. The maize productivity was larger when the covering cultures handling was mechanically accomplished. The interval between handling and sowing of soyabean and maize culture is important only for rice or Brachiaria decumbens covering cultures; in this case, a 38-day previous handling is recommended. Maize yield was inferior when sown on sorghum residues.
  • Authors:
    • Reeves, D.
    • Torbert, H.
    • Rogers, H.
    • Runion, G.
    • Prior, S.
  • Source: Global Change Biology
  • Volume: 11
  • Issue: 4
  • Year: 2005
  • Summary: Increasing atmospheric CO 2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO 2. The study used a split-plot design replicated three times with two management systems as main plots and two CO 2 levels (ambient=375 L L -1 and elevated CO 2=683 L L -1) as split-plots using open-top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum ( Sorghum bicolor (L.) Moench.) and soybean ( Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover ( Trifolium incarnatum L.), sunn hemp ( Crotalaria juncea L.), and wheat ( Triticum aestivum L.)) under no-tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO 2, but CO 2 effects on weed residue were variable in the conventional system. Elevated CO 2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO 2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0-5 cm depth increment in the conservation system under CO 2-enriched conditions. Smaller shifts in soil C were noted at greater depths (5-10 and 15-30 cm) because of management or CO 2 level. Results suggest that with conservation management in an elevated CO 2 environment, greater residue amounts could increase soil C storage as well as increase ground cover.
  • Authors:
    • Parandiyal, A.
    • Singh, S.
    • Arjun, P.
    • Singh, K.
    • Ashok, K.
    • Shakir, A.
    • Prasad, S.
    • Singh, R.
  • Source: Indian Journal of Soil Conservation
  • Volume: 33
  • Issue: 2
  • Year: 2005
  • Summary: Bunding and field levelling are the most preferred activities in the community-driven watershed projects in the semiarid region. In a two-year study carried out during June 1999 to June 2001 on a farmer's field in a ravinous watershed located in south-eastern Rajasthan, India, the effect of bunding and levelling on in situ moisture conservation and corresponding increase in grain and stover yields of chickpea, mustard, sorghum and soyabean was compared. These land treatments considerably improved profile moisture and crop yields during normal as well as deficit monsoon year. Results indicated that conservation measures can potentially stabilize crop production under dryland cropping systems. The land treatments and choice of crops were significant factors influencing economic productivity of land uses. In response to bunding alone and bunding with levelling, crop production increased by 46 and 112%, respectively, over control. Mustard cultivation recovered 76% of the bunding cost and 64% of the bunding+levelling cost in the first year only after imposing land treatments. It is concluded that in semiarid regions, appropriate conservation measures coupled with suitable land use planning result in convincing tangible benefits on short-terms basis, apart from their protective and long-term intangible benefits.
  • Authors:
    • Klepker, D.
    • Yamada, M.
    • Hitsuda, K.
  • Source: Agronomy Journal
  • Volume: 97
  • Issue: 1
  • Year: 2005
  • Summary: Sulfur deficiency symptoms are more often observed in crops at early stages of growth since S can be easily leached from the surface soil. The objectives of this study were to evaluate some of the popular rotation crops grown in Brazil for tolerance to low external S levels and to determine the critical tissue concentration for S deficiency during early stages of growth. Germinated seedlings of soybean [ Glycine max (L.) Merr.], rice ( Oryza sativa L.), maize ( Zea mays L.), field bean ( Phaseolus vulgaris L.), wheat ( Triticum aestivum L.), cotton ( Gossypium spp.), sorghum ( Sorghum bicolor L.), and sunflower ( Helianthus annuus L.) were transferred to water culture with 0.0 to 32.0 mg S L -1 and were grown for 29 d. The minimum S concentration required in nutrient solutions was 2.0 mg L -1 for sunflower; 1.0 mg L -1 for cotton, sorghum, wheat, and soybean; and 0.5 mg L -1 or less for field bean, rice, and maize. All crops achieved optimum growth at 2.0 mg S L -1. Critical shoot S concentration at early stages of growth was 0.8 g kg -1 in maize and soybean; 1.1 to 1.3 g kg -1 in cotton, sorghum, and rice; and 1.4 to 1.6 g kg -1 in wheat, sunflower, and field bean. Our results demonstrate that the tolerance to low external S (
  • Authors:
    • Jamiokowska, A.
  • Source: Ochrona Roślin
  • Volume: 50
  • Issue: 1
  • Year: 2005
  • Summary: The importance of cover crops for protection of soil from water and aerial erosion, as well as leaching of nutrients from soil is emphasized. Use of green manures as a mechanical barrier against weeds, and beneficial effects of exudates of green manures on control of weeds, pests and diseases of vegetables are discussed. Recommendations are included for autumn and spring sowing of cover crops (e.g. rye, wheat, oat, barley, sorghum, vetch, rape and mustard), which are cut or desiccated in the spring and are left in the field as mulch. Negative effects of mulching are considered, i.e. a decrease of soil temperature in the spring resulting in a slower growth rate and later ripening of tomato. It is also stated that yield of some vegetables, including tomato, can be lower in the no-tillage cultivation compared with traditional cultivation. However, the dry matter content is higher in tomato grown with no-tillage. Field trials were conducted in Lublin, Poland, to study the effect of cover crops, such as rye, white and red clover, and field pea on health of tomato. Data are tabulated on fungi isolated from soil under tomato grown with rye and field pea as mulch crops compared with the traditional cultivation system during 1998-2000. The results showed that use of cover crops resulted in a good control of plant pathogens, especially Fusarium oxysporum f.sp. lycopersici, and an increase in the number of antagonistic fungi, e.g. Trichoderma spp. It is concluded that use of cover crops allows decrease of the number of mechanical cultivations, as well as decrease of the use of fertilizers, fungicides, insecticides and herbicides.
  • Authors:
    • Cooke, F. T.,Jr.
    • Robinson, J. R. C.
    • Martin, S. W.
    • Parvin, D.
  • Source: Crop Management
  • Issue: April
  • Year: 2005
  • Summary: This study compared conventional, reduced tillage and no-till systems for cotton, maize, soyabean and sorghum in the Mississippi Delta. Most of the necessary parameters (e.g. yields, costs, equipment, field operations) were obtained from published budgets. The conventional systems typically involved subsoiling, discing, field cultivation, hipping and in-season cultivation. The reduced tillage systems substituted herbicides for heavy pre-plant soil preparation and in-season cultivation, while no-till systems substituted herbicides for all tillage operations. A whole-farm, mixed integer programming model was developed to determine the most profitable crop/tillage combinations at different acreage sizes, assess the actual economies of size (in dollars per acre) in row crop farming, determine the number of acres required to maximize economic viability, determine the best acreage size to minimize or optimize full-time labour, and evaluate profitability trade-offs, including farm programme eligibility, under different tillage systems.
  • Authors:
    • Whitehead, W. F.
    • Sainju, U. M.
    • Singh, B. P.
  • Source: Plant and Soil
  • Volume: 273
  • Issue: 1-2
  • Year: 2005
  • Summary: Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolor L.) and sequester significant amount of atmospheric CO, in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)],. four cover crops [legume (hairy vetch) (Vicia villosa Roth), nonlegume (rye) (Secale cereale L), hairy vetch/rye mixture, and winter weeds or no cover crop], and three N fertilization rates (0, 60-65, and 120-130 kg N ha(-1)) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain. their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 In central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic. Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha(-1) but in stalks, it was greater in ST with 60 and 120 kg N ha(-1) than in CT with 0 kg N ha(-1). In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha(-1) than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha(-1) and in sorghum ranged from 3.4 to 7.2 Mg ha(-1). Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0-10 cm depth was greater in vetch with 0 kg N ha(-1) or in vetch/rye with 120-130 kg N ha(-1) than in weeds with 0 and 60 kg N ha(-1) but at 10-30 cm, it was greater in rye with 120-130 kg N ha(-1) than in weeds with or without rate. In ST, soil organic C at 0-10 cm was greater in rye with 120-130 kg N ha(-1) than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha(-1). Soil organic C at 0-10 and 10-30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 6065 kg N ha(-1) can sustain C accumulation in cotton lint and sorghum grain and increase C storage soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.
  • Authors:
    • Abou-Alaiw, W.
    • Al-Abed, D.
    • Zhang, S. L.
    • Parani, M.
    • Chennareddy, S.
    • Sairam, R.
    • Goldman, S.
  • Source: In Vitro Cellular & Developmental Biology - Plant
  • Volume: 41
  • Issue: 4
  • Year: 2005
  • Summary: The development of robust plant regeneration technology in cereals, dicots and ornamentals that is in turn coupled to a high-frequency DNA transfer technology is reported. Transgenic cereals that include maize, Tripsacum, sorghum, Festuca and Lolium, in addition to dicots that include soybean, cotton and various ornamentals such as petunia, begonia, and geranium have been produced following either somatic embryogenesis or direct organogenesis independent of genotype. Coupled with these regeneration protocols, we have also identified several interesting genes and promoters for incorporation into various crops and ornamentals. In addition, the phenomenon of direct in vitro flowering from cotyledonary nodes in soybean is described. In in vitro flowering, the formation of a plant body is suppressed and the cells of the cotyledonary node produce complete flowers from which fertile seed is recovered. This in vitro flowering technology serves as a complementary tool to chloroplast transformation for developing a new transgenic pollen containment strategy for crop species. Recently, the center has undertaken to screen the expression response of the 24 000 Arabidopsis genes to nitric oxide. This signaling molecule upregulated 342 genes and downregulated 80 genes. The object here was to identify a population of promoters that can be manipulated by using a signaling molecule. In addition, in keeping with the mission of enhancing greenhouse profitability for North West Ohio growers, we cloned a number of genes responsive for disease resistance from ornamentals that play an important role in disease management and abiotic stress. We have constructed a plant transformation vector with CBF3 gene under the rd29A promoter for engineering cold and freezing tolerance in petunia. Leaf discs of Petunia * hybrida v26 were used for Agrobacterium-mediated transformation, and 44 hygromycin-resistant T0 plants were obtained. The presence of CBF3 gene was confirmed in all the transgenic plants by PCR and Southern analyses.