- Authors:
- De Moura, R. L.
- Klonsky, K. M.
- Campbell-Mathews, M.
- Canevari, M.
- Frate, C. A.
- Mueller, S. C.
- Source: University of California Cooperative Extension Publication
- Year: 2008
- Authors:
- Furtan, W. H.
- Davey, K. A.
- Source: Canadian Journal of Agricultural Economics/Revue Canadienne D'Agroeconomie
- Volume: 56
- Issue: 3
- Year: 2008
- Summary: The adoption of conservation tillage technology since the 1970s has been one of the most remarkable changes in the production of crops on the Canadian Prairies. The decision whether to adopt conservation tillage technology or not requires the producer to go through a thorough decision-making process. In Canada, there has been little economic research on the question of what farm, regional, and environmental characteristics affect the adoption decision. Using 1991, 1996, and 2001 Census of Agriculture data together with other data sources we estimate a probit model explaining the adoption decision. We find that important variables include farm size, proximity to a research station, type of soil, and weather conditions.
- Authors:
- Parton, W. J.
- Halvorson, A. D.
- Del Grosso, S. J.
- Source: Journal of Environmental Quality
- Volume: 37
- Year: 2008
- Summary: Agricultural soils are responsible for the majority of nitrous oxide (N2O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N2O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N2O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N2O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N2O emissions. Lowering the amount of N2O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO3- levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO3- levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.
- Authors:
- Waggoner, J. W.,Jr.
- Smith, M. A.
- Hart ,R. H.
- Derner, J. D.
- Source: Livestock Science
- Volume: 117
- Issue: 1
- Year: 2008
- Summary: The effects of stocking rate and grazing system on gains of yearling beef cattle grazing rangelands have largely been addressed in short-term (<10 years) studies, and often stocking rates are confounded within grazing systems with higher stocking rates for short-duration rotational grazing systems compared to season-long grazing. A grazing system (season-long and short-duration rotational grazing) x stocking rate (light: 16 steers/80 ha, 18.0 animal unit days/ha; moderate: 4 steers/12 ha, 30.1 animal unit days/ ha, and heavy: 4 steers/9 ha, 40.1 animal unit days/ha) study was initiated in 1982 on northern mixed-grass prairie. Here, we report on the final 16 years (1991-2006) for yearling beef cattle gains, Average daily gains (kg/head/day) across all years with season-long grazing decreased with increasing stocking rate and grazing pressure. Heavy stocking rates reduced average daily gain by 16% and 12% compared to light and moderate stocking rates, respectively. In contrast to average daily gain, beef production (kg/ha) increased with increasing stocking rate and grazing pressure. Cattle gains were reduced by 6% with short-duration rotation compared to season-long grazing over the study period, with differences between systems observed in years with average, but not dry or wet, spring (April+May+June) precipitation. Grazing season gains (kg/head) and beef production both exhibited significant increasing hyperbolic relationships with spring precipitation, with the percentage of variation explained by spring precipitation substantially higher (62-83%) for beef production compared to grazing season gains (32-45%). The influence of spring precipitation on cattle gains suggests that incorporation of these relationships into modeling efforts for strategic planning and risk assessment will assist land managers in better matching forage and animal resources for greater sustainability in this highly variable environment.
- Authors:
- Worth, D.
- Desjardins, R. L.
- VergeĀ“, X. P. C.
- Dyer, J. A.
- Source: Canadian Journal of Soil Science
- Volume: 88
- Issue: 5
- Year: 2008
- Summary: Estimates of the efficiency of mitigation measures on reducing greenhouse gas (GHG) emissions from the agricultural sector are required. In this paper, recently calculated dairy GHG emissions for 2001 were extrapolated back to 1981 for census years using an index. The index was verified by comparing it with estimates based on the Intergovernmental Panel on Climate Change (IPCC) methodology for 1991. The index agreed with the IPCC estimates within 1% for methane and 4% for nitrous oxide on a national scale with no region having a difference of more than 5% for methane. For nitrous oxide, all regions were within 10%, except British Columbia, where the index was 19% too high. The index indicates that GHG emissions from primary milk production within the Canadian dairy industry have decreased by about 49% since 1981, mainly due to a 57% reduction in the dairy cow population during that period. The GHG emissions per kilogram of milk decreased by 35%, that is from 1.22 kg CO2eq kg-1 milk to 0.91 kg CO2eq kg-1 milk. Because this study took into account the energy-related CO2 emissions from all the major farm inputs (fertilizer and fossil fuel), there was little risk of hidden GHG emissions in the emission intensity calculation. This study demonstrates that where lack of input data restricts historical application of simulation models, a semi-empirical index approach can yield valuable results. Key words: Greenhouse gas, dairy industry, index, intensity indicator
- Authors:
- Janzen, H. H.
- Ellert, B. H.
- Source: Canadian Journal of Soil Science
- Volume: 88
- Issue: 2
- Year: 2008
- Summary: Irrigated land in southern Alberta is intensively managed, producing high yields but also requiring higher inputs, notably of nitrogen (N), than adjacent rainfed lands. The higher N inputs, combined with enhanced soil moisture, might stimulate nitrous oxide (N2O) emissions, but the influence of management on these emissions has not been widely studied. Our objective was to assess soil N2O emissions, along with those of carbon dioxide (CO2) and of methane (CH4), from irrigated cropping systems as influenced by source of N. We used a chamber technique to measure year-round emissions for 3 yr in long-term irrigated crop rotations receiving N as legume crop residues, non-legume crop residues, livestock manure or ammonium nitrate fertilizer. Unlike CO2 fluxes, which peaked during the growing season, those of N2O showed no consistent seasonal trends; emissions occurred sporadically in bursts throughout the year. Depending on management practices, 0.4 to 4.0 kg N2O-N ha(-1) yr(-1) was emitted to the atmosphere. The amount of N2O emitted from the alfalfa system, averaged over all manure and fertilizer N amendments, was more than twofold that emitted from the corn system. The proportions of fertilizer-N released as N2O were 0.95% for the alfalfa system and 1.30% for the corn system. After livestock manure or legume residues were incorporated, soil CO2 and N2O emissions appeared to be intertwined, but during the early spring N2O emissions were decoupled from CO2. Furthermore, N2O emissions were highly variable in space; at three of 54 chambers, N2O fluxes were consistently 12 to 55 times greater than those for other chambers in the same treatment. Such complexity conceals the underlying processes of net N2O production and transport to the soil surface.
- Authors:
- de Moura, R. L.
- Klonsky, K. M.
- Viveros, M. A.
- Freeman, M. W.
- Source: University of California Cooperative Extension Publication
- Year: 2008
- Authors:
- Berrada, A.
- Reule, C. A.
- Bartolo, M. E.
- Halvorson, A. D.
- Source: Agronomy Journal
- Volume: 100
- Issue: 4
- Year: 2008
- Summary: Onion (Allium cepa L.) is a high cash value crop with a very shallow root system that is frequently irrigated and fertilized with high N rates to maximize yield. Converting from furrow-irrigated to drip-irrigatcd onion production may reduce N fertilizer needs, water inputs, and NO3-N leaching potential. Onion growth and N uptake, fresh yield, and residual soil NO3-N were determined under drip and furrow irrigation on a clay loam soil with N fertilizer rates from 0 to 224 kg N ha(-1). Onions were sampled bi-weekly from 25 May to 30 August in 2005 and 2006 from each treatment. In 2005, 72% less water was applied with the drip system compared with furrow system, and 57% less in 2006. Onion yields were significantly greater with the drip system. Total marketable fresh onion yield increasedwith increasing N rate in 2005 only.The drip system had more colossal and jumbo sized onions and less medium sized onions than the furrow system. Biomass production and N accumulation accelerated in mid-June each year with an average total N accumulation (leaves + bulbs) of 121 kg N ha(-1) at final harvest. Irrigation water use efficiency (IWUE) and N use efficiency (NUE) were higher with the drip system than with the furrow system. Residual soil NO3-N levels were greater in the drip-irrigated treatments after onion harvest in 2005 than in the furrow-irrigated treatments, but soil NO3-N levels were similar after harvest in 2006. Adjusted gross economic returns (less the cost of N, water, and drip system) were greater with drip irrigation than with furrow irrigation. This study demonstrates that fresh onion yields, potential economic returns, IWUE, and NUE can be improved in Colorado by using drip irrigation for onion production rather than furrow irrigation.
- Authors:
- Reule, C. A.
- Del Grosso, S. J.
- Halvorson, A. D.
- Source: Journal of Environmental Quality
- Volume: 37
- Issue: 4
- Year: 2008
- Summary: We evaluated the effects of irrigated crop management practices on nitrous oxide (N2O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha-1 during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk-1) and a gas chromatograph analyzer. Linear increases in N2O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N2O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N2O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N2O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N2O emissions from irrigated cropping systems.
- Authors:
- Derner, J. D.
- Welker, J. M.
- Ganjegunte, G. K.
- Vance, G. F.
- Buyer, J. S.
- Schuman, G. E.
- Stahl, P. D.
- Ingram, L. J.
- Source: Soil Science Society of America Journal
- Volume: 72
- Issue: 4
- Year: 2008
- Summary: Good management of rangelands promotes C sequestration and reduces the likelihood of these ecosystems becoming net sources of CO2. As part of an ongoing study, soil was sampled in 2003 to investigate the long-term effects of different livestock grazing treatments on soil organic carbon (SOC), total nitrogen (TN), and microbial communities. The three treatments studied (no grazing, EX; continuously, lightly grazed [10% utilization], CL; and continuously, heavily grazed [50% utilization], CH) have been imposed on a northern mixed-grass prairie near Cheyenne, WY, for 21 yr. In the 10 yr since treatments were last sampled in 1993, the study area has been subject to several years of drought. In the 0 to 60 cm depth there was little change in SOC in the EX or CL treatments between 1993 and 2003, whereas there was a 30% loss of SOC in the CH treatment. This loss is attributed to plant community changes (from a cool-season [C-3] to a warm-season [C-4] plant dominated community) resulting in organic C accumulating nearer the soil surface, making it more vulnerable to loss. Soil TN increased in the EX and CL treatments between 1993 and 2003, but declined in the CH treatment. Differences in plant community composition and subsequent changes in SOC and TN may have contributed to microbial biomass, respiration, and N-mineralization rates generally being greatest in CL and least in the CH treatment. Although no significant differences were observed in any specific microbial group based on concentrations of phospholipid fatty acid (PLFA) biomarkers, multivariate analysis of PLFA data revealed that microbial community structure differed among treatments. The CH grazing rate during a drought period altered plant community and microbial composition which subsequently impacted biogeochemical C and N cycles.