- Authors:
- Bridges, M.
- Henry, W. B.
- Shaner, D. L.
- Khosla, R.
- Westra, P.
- Reich, R.
- Source: Journal of Environmental Quality
- Volume: 37
- Issue: 6
- Year: 2008
- Summary: An area of interest in precision farming is variable-rate application of herbicides to optimize herbicide use efficiency and minimize negative off-site and non-target effects. Site-specific weed management based on field scale management zones derived from soil characteristics known to affect soil-applied herbicide efficacy could alleviate challenges posed by post-emergence precision weed management. Two commonly used soil-applied herbicides in dryland corn ( Zea mays L.) production are atrazine and metolachlor. Accelerated dissipation of atrazine has been discovered recently in irrigated corn fields in eastern Colorado. The objectives of this study were (i) to compare the rates of dissipation of atrazine and metolachlor across different soil zones from three dryland no-tillage fields under laboratory incubation conditions and (ii) to determine if rapid dissipation of atrazine and/or metolachlor occurred in dryland soils. Herbicide dissipation was evaluated at time points between 0 and 35 d after soil treatment using a toluene extraction procedure with GC/MS analysis. Differential rates of atrazine and metolachlor dissipation occurred between two soil zones on two of three fields evaluated. Accelerated atrazine dissipation occurred in soil from all fields of this study, with half-lives ranging from 1.8 to 3.2 d in the laboratory. The rapid atrazine dissipation rates were likely attributed to the history of atrazine use on all fields investigated in this study. Metolachlor dissipation was not considered accelerated and exhibited half-lives ranging from 9.0 to 10.7 d in the laboratory.
- Authors:
- Fan, T.
- Xu, M
- Song, S.
- Zhou, G.
- Ding, L.
- Source: Journal of Plant Nutrition and Soil Science
- Volume: 171
- Issue: 3
- Year: 2008
- Summary: Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat ( Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha -1 for the unfertilized plots (CK) to 4.65 t ha -1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn ( Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha -1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha -1 y -1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha -1 y -1, similar to the declines of 77.4 kg ha -1 y -1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha -1 y -1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0-20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil-C sequestration rates ranged from 0.014 t C ha -1 y -1 for the CK to 0.372 t C ha -1 y -1 for the MNP. We found a strong linear relationship ( R2=0.74, p=0.025) between SOC sequestration and cumulative C input, with C conversion-to-SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.
- Authors:
- Desjardins, R. L.
- Wagner-Riddle, C.
- Pennock, D. J.
- McConkey, B. G.
- Lemke, R. L.
- Worth, D. E.
- Rochette, P.
- Source: Canadian Journal of Soil Science
- Volume: 88
- Issue: 5
- Year: 2008
- Summary: International initiatives such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol require that countries calculate national inventories of their greenhouse gas emissions. The objective of the present study was to develop a country-specific (Tier II) methodology to calculate the inventory of N2O emissions from agricultural soils in Canada. Regional fertilizer-induced emission factors (EFreg) were first determined using available field experimental data. Values for EFreg were 0.0016 kg N2O-N kg-1 N in the semi-arid Brown and 0.008 kg N2O-N kg N-1 in the sub-humid Black soil zones of the Prairie region, and 0.017 kg N2O-N kg-1 N in the humid provinces of Quebec and Ontario. A function relating EFreg to the "precipitation to potential evapotranspiration" ratio was determined to estimate annual emission factors (EFeco) at the ecodistrict scale in all agricultural regions of Canada. Country-specific coefficients were also developed to account for the effect of several additional factors on soil N2O emissions. Emissions from fine-textured soils were estimated as being 50% greater than from coarse- and medium-textured soils in eastern Canada; emissions during winter and spring thaw corresponded to 40% of emissions during the snow-free season in eastern Canada; increased emissions from lower (wetter) sections of the landscape and irrigated areas were accounted for; emissions from no-till soils were 10% greater in eastern, but 20% lower in western Canada than from those under conventional tillage practices; emissions under summerfallow were estimated as being equal to those from soils under annual cropping. This country-specific methodology therefore accounts for regional climatic and land use impacts on N2O emission factors, and includes several sources/offsets that are not included in the Intergovernmental Panel on Climate Change (IPCC) default approach.
- Authors:
- Stevens, W. B.
- Jabro, J. D.
- Sainju, U. M.
- Source: Journal of Environmental Quality
- Volume: 37
- Issue: 1
- Year: 2008
- Summary: Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha-1, no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha-1, no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO2 flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO2 flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO2 flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha-1 in Montana. The CO2 flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO2 flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO2 flux can be reduced from croplands to a level similar to that in CRP planting using no-tilled crops with or without N fertilization compared with other management practices.
- Authors:
- Martius, C.
- Lamers, J. P. A.
- Ibragimov, N.
- Kienzler, K.
- Wassmann, R.
- Scheer, C.
- Source: Global Change Biology
- Volume: 14
- Issue: 10
- Year: 2008
- Summary: Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 mu g N2O-N m(-2) h(-1) with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 mu g N2O-N m(-2) h(-1)), whereas only negligible fluxes of N2O (< 2 mu g N2O-N m(-2) h(-1)) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m(-2) day(-1) and a low seasonal total of 35.2 kg CH4 ha(-1). The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha(-1). The biennial cotton-wheat-rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha(-1) yr(-1). The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
- Authors:
- Place, F.
- Ajayi, O. C.
- Akinnifesi, F. K.
- Sileshi, G.
- Source: Plant and Soil
- Volume: 307
- Issue: 1-2
- Year: 2008
- Summary: A number of studies have tested the effect of woody and herbaceous legumes on soil fertility and maize yields in sub-Saharan Africa. However, their effects on maize productivity are much debated because results have been variable. A meta-analysis was conducted with the aim of evaluating the evidence in support of yield benefits from woody and herbaceous green manure legumes. A total of 94 peer-reviewed publications from West, East and southern Africa qualified for inclusion in the analysis. Maize yield from herbaceous green manure legumes (54 publications), non-coppicing legumes (48 publications), coppicing woody legumes (10 publications), natural fallows (29 publications), and fully fertilized monoculture maize (52 publications) were compared. Mixed linear modelling using yield differences (D) and response ratios (RR) indicated that the response to legumes is positive. The mean yield increase (D) over unfertilized maize was highest (2.3 t ha-1) and least variable (CV=70%) in fully fertilized maize, while it was lowest (0.3 t ha-1) and most variable (CV=229%) in natural fallows. The increase in yield over unfertilized maize was 1.6 t ha-1 with coppicing woody legumes, 1.3 t ha-1 with non-coppicing woody legumes and 0.8 t ha-1 with herbaceous green manure legumes. Doubling and tripling of yields relative to the control (RR > 2) was recorded in coppicing species (67% of the cases), non-coppicing legumes (45% of the cases), herbaceous green manure legumes (16% of the cases) and natural fallows (19% of the cases). However, doubling or tripling of yields occurred only in low and medium potential sites. Amending post-fallow plots with 50% of the recommended fertilizer dose further increased yields by over 25% indicating that legume rotations may play an important role in reducing fertilizer requirements. Except with the natural fallow, the 95% confidence intervals of D and RR were higher than 1 and 0, respectively indicating significant and positive response to treatments. Therefore, it is concluded that the global maize yield response to legumes is significantly positive and higher than unfertilized maize and natural vegetation fallows.
- Authors:
- Snyder, K.
- Sims, P. L.
- Schuman, G. E.
- Saliendra, N. Z.
- Morgan, J. A.
- Mielnick, P.
- Mayeux, H.
- Johnson, D. A.
- Haferkamp, M.
- Gilmanov, T. G.
- Frank, A. B.
- Emmerich, W.
- Dugas, W.
- Bradford, J. A.
- Angell, R.
- Svejcar, T.
- Source: Rangeland Ecology & Management
- Volume: 61
- Issue: 5
- Year: 2008
- Summary: Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We Studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands including four Great Plains sites from Texas to North Dakota, two Southwestern hot desert sites in New Mexico and Arizona, and two Northwestern sagebrush steppe sites in Idaho and Oregon. We used the Bowen ratio-energy balance system for continuous measurements of energy, water vapor, and carbon dioxide (CO2) fluxes at each study site during the measurement period (1996 to 2001 for most sites). Data were processed and screened using standardized procedures, which facilitated across-location comparisons. Although almost any site could be either a sink or source for C depending on yearly weather patterns, five of the eight native rangelands typically were sinks for atmospheric CO2 during the study period. Both sagebrush steppe sites were sinks and three of four Great Plains grasslands were sinks, but the two Southwest hot desert sites were sources of C on an annual basis. Most rangelands were characterized by short periods of high C uptake (2 mo to 3 mo) and long periods of C balance or small respiratory losses of C. Weather patterns during the measurement period strongly influenced conclusions about NEE on any given rangeland site. Droughts tended to limit periods of high C uptake and thus cause even the most productive sites to become sources of C on an annual basis. Our results show that native rangelands are a potentially important terrestrial sink for atmospheric CO2, and maintaining the period of active C uptake will be critical if we are to manage rangelands for C sequestration.
- Authors:
- Worth, D.
- Desjardins, R. L.
- Dyer, J. A.
- Vergé, X. P. C.
- Source: Agricultural Systems
- Volume: 98
- Issue: 2
- Year: 2008
- Summary: Commodity-specific estimates of the greenhouse gas (GHG) emissions from Canadian agriculture are required in order to identify the most efficient GHG mitigation measures. In this paper, the methodology from the Intergovernmental Panel on Climate Change (IPCC) for estimating bovine GHG emissions, for census years from 1981 to 2001, was applied to the Canadian beef industry. This analysis, which is based on several adaptations of IPCC methodology already done for the Canadian dairy industry, includes the concept of a beef crop complex, the land base that feeds the beef population, and the use of recommendations for livestock feed rations and fertilizer application rates to down-scale the national area totals of each crop, regardless of the use of that crop, to the feed requirements of the Canada's beef population. It shows how high energy feeds are reducing enteric methane emissions by displacing high roughage diets. It also calculates an emissions intensity indicator based on the total weight of live beef cattle destined for market. While total GHG from Canadian beef production have increased from 25 to 32 Tg of CO2 equiv. between 1981 and 2001, this increase was mainly driven by expansion of the Canadian cattle industry. The emission intensity indicator showed that between 1981 and 2001, the Canadian beef industry GHG emissions per kg of live animal weight produced for market decreased from 16.4 to 10.4 kg of CO2 equiv.
- Authors:
- Source: Agronomy Journal
- Volume: 100
- Issue: 1
- Year: 2008
- Summary: Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio-oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio-oil is an energy raw material ([~]17 MJ kg-1) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co-product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half-life of C in soil charcoal is in excess of 1000 yr. Hence, soil-applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 x 109 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio-oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO2-C.
- Authors:
- Hepperly, P.
- LaSalle, T. J.
- Year: 2008