- Authors:
- Source: Crop Protection
- Volume: 27
- Issue: 2
- Year: 2008
- Summary: Cover crops may have a valuable role to play in developing improved dry bean production systems. A field experiment was conducted to determine the agronomic benefits of including various fall-seeded and spring-seeded cereal cover crops with and without in-crop herbicides in dry bean. Main plot treatments included fall-seeded winter rye, barley, oat, and spring rye; spring-seeded barley, oat, and spring rye; and a no-cover crop control. Subplot treatments consisted of in-crop sethoxydim/bentazon and an untreated control. Fall-seeded cover crops were often superior to spring-seeded cover crops in terms of providing sufficient ground cover to reduce the risk of soil erosion and reducing weed emergence and growth. Among the fall-seeded cover crops, winter rye provided the greatest ground cover and often resulted in the greatest weed suppression. Dry bean density was not affected by any of the cover crops, but fall-seeded cover crops delayed emergence by up to 5 days and delayed maturity by up to 4 days. Cover crop effects on dry bean yield were most evident in the absence of in-crop herbicides, where fall-seeded cover crops increased dry bean yield by 20-90%. Cover crops also increased dry bean yield in 2 of 3 years when in-crop herbicides were used but yield increases were much smaller, ranging from 5% to 13%. These yield increases occurred with fall-seed cover crops that aided in weed management but also with spring-seeded cover crops where weed suppression was not evident, suggesting that cover crops provided additional benefits beyond weed management. Information gained in this study will be utilized to advise farmers on the most suitable use of cover crops in sustainable dry bean production systems.
- Authors:
- Jones, C. A.
- Buschena, D. E.
- Miller, P. R.
- Holmes, J. A.
- Source: Agronomy Journal
- Volume: 100
- Issue: 3
- Year: 2008
- Summary: Transition to no-till (NT) and organic (ORG) farming systems may enhance sustainability. Our objectives were to compare transitional crop productivity and soil nutrient status among diversified NT and ORG cropping systems in Montana. Three NT systems were designed as 4-yr rotations, including a pulse (lentil [ Lens culinaris Medik.] or pea [ Pisum sativum L.]), an oilseed (canola [ Brassica napus L.] or sunflower [ Helianthus annuus L.]) and two cereal crops (corn [ Zea mays L.], proso millet [ Panicum miliaceum L.], or wheat [ Triticum aestivum L.]). No-till continuous wheat was also included. The ORG system included a green manure (pea), wheat, lentil, and barley ( Hordeum vulgare L.) and received no inputs. Winter wheat in the ORG system yielded equal or greater than in the NT systems, and had superior grain quality, even though 117 kg N ha -1 was applied to the NT winter wheat. After 4 yr, soil nitrate-N and Olsen-P were 41 and 14% lower in the ORG system, whereas potentially mineralizable N was 23% higher in the ORG system. After 4 yr, total economic net returns were equal between NT and ORG systems on a per-ha basis. Studying simultaneous transition to diversified NT and ORG cropping systems was instructive for increased sustainability.
- Authors:
- Archer, D. W.
- Halvorson, A. D.
- Reule, C. A.
- Source: Agronomy Journal
- Volume: 100
- Issue: 4
- Year: 2008
- Summary: Conversion of irrigated cropland from conventional tillage (CT) to no-till (NT) could have several environmental benefits including reduced erosion potential, reduction of greenhouse gas emissions, and conservation of water. However NT must be economically viable if it is to be adopted. Costs of production and economic returns were evaluated for an irrigated, continuous corn ( Zea mays L.) system under CT and NT over 6 yr on a clay loam soil in northern Colorado. Yield responses to N fertilization were included to determine economic optimum fertilization rates under each tillage system. Corn grain yields at economic optimum N fertilizer rates were 1.1 to 1.4 Mg ha -1 lower for NT than for CT. However, net returns were $46 to 74 ha -1 higher for NT than for CT due to reductions in operating costs of $57 to 114 ha -1 and reductions in machinery ownership costs of $87 to 90 ha -1. Operating cost savings were realized largely due to fuel and labor reductions of 75% and 71 to 72%, respectively, and in spite of higher N fertilizer requirements of 16 to 55 kg ha -1 for NT compared to CT. No-till, irrigated, continuous corn appears to be an economically viable option for replacing CT production systems in the central Great Plains, especially when combined with the environmental benefits of the NT system.
- Authors:
- Buck, R.
- Hinz, C.
- Murphy, D. V.
- Butterbach-Bahl, K.
- Gatter, D.
- Kiese, R.
- Barton, L.
- Source: Global Change Biology
- Volume: 14
- Issue: 1
- Year: 2008
- Summary: Understanding nitrous oxide (N2O) emissions from agricultural soils in semi-arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain-fed, cropped soil in a semi-arid region of south-western Australia for one year on a sub-daily basis. The site included N-fertilized (100 kg N ha-1 yr-1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (-1.8 to 7.3 g N2O-N ha-1 day-1) and culminated in an annual loss of 0.11 kg N2O-N ha-1 from N-fertilized soil and 0.09 kg N2O-N ha-1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the "background" emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi-arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. "Background" emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi-arid regions on global terrestrial N2O emissions.
- Authors:
- Carter,D.
- L.,Barton
- Biswas,W. K.
- Source: Water and Environment Journal
- Volume: 22
- Issue: 3
- Year: 2008
- Authors:
- Baigent, R.
- Kelly, K. B.
- Phillips, F. A.
- Source: Australian Journal of Experimental Agriculture
- Volume: 48
- Year: 2008
- Authors:
- Barton, L.
- Kiese, R.
- Gatter, D.
- Butterbach-Bahl, K.
- Buck, R.
- Hinz, C.
- Murphy, D. V.
- Source: Global Change Biology
- Volume: 14
- Issue: 1
- Year: 2008
- Summary: Understanding nitrous oxide (N2O) emissions from agricultural soils in semi-arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain-fed, cropped soil in a semi-arid region of south-western Australia for one year on a sub-daily basis. The site included N-fertilized (100 kg N ha−1 yr−1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (−1.8 to 7.3 g N2O-N ha−1 day−1) and culminated in an annual loss of 0.11 kg N2O-N ha−1 from N-fertilized soil and 0.09 kg N2O-N ha−1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi-arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi-arid regions on global terrestrial N2O emissions.
- Authors:
- Kelly, K.
- Armstrong, R.
- Phillips, F.
- Officer, S. J.
- Source: 14th Australian Agronomy Conference
- Year: 2008
- Authors:
- Aarndt, S. K.
- Eckard, R.
- Livesley, S. J.
- Source: Plant and Soil
- Volume: 309
- Issue: 1-2
- Year: 2008
- Authors:
- Phillips, F.
- Kelly, K.
- Leuning, R.
- Edis, R. B.
- Galbally, I. E.
- Chen, D.
- Turner, D. A.
- Source: Plant and Soil
- Volume: 309
- Issue: 1-2
- Year: 2008