- Authors:
- Hoyt, G. D.
- Walgenbach, J. F.
- Hummel, R. L.
- Kennedy, G. G.
- Source: Agriculture, Ecosystems & Environment
- Volume: 93
- Issue: 1-3
- Year: 2002
- Summary: Populations of epigeal arthropods were monitored in vegetable production systems under varying degrees of sustainable agricultural practices in Fletcher, NC (USA). Two tillage types (conventional plow and disk, strip-tillage (ST)), two input approaches (chemically based, biologically based) and two cropping schedules (continuous tomato Lycopersicon esculentum Mill., 3-year rotation of sweet corn [Zea mays L.]/cabbage [Brassica oleracea L.], cucumber [Cucumis sativus L.]/cabbage and tomato) were employed from 1995-1998. A second study with tomatoes was performed in 1997-1998 to separate effects of pesticide use, intercropping and herbicide application. Pitfall traps (48-h sample period) were used at similar to25-day intervals to monitor relative activity of carabid beetles (Coleoptera: Carabidae), staphylinid (Coleoptera: Staphylinidae) beetles and lycosid spiders (Araneidae: Lycosidae). Carabids and lycosids appeared to be more active in systems with ground cover. Trap catches of carabid species were not significantly affected by insecticide input, but trap catches of lycosids were lower in plots with conventional insecticide use. No consistent effect of tillage was found over time, although Scarites spp. were more active in minimally disturbed habitats in 1998. Two distinct patterns of seasonal activity were observed for carabid beetles and lycosid spiders. Ground cover generally enhanced abundance of carabids and lycosids, while tillage type, pesticide use and crop rotation had different effects. (C) 2002 Elsevier Science B.V. All rights reserved.
- Authors:
- Nielsen, G.
- Mortensen, D.
- McGinn, S.
- Coen, G.
- Caprio, J.
- Waltman, S.
- Padbury, G.
- Sinclair, R.
- Source: Agronomy Journal
- Volume: 94
- Issue: 2
- Year: 2002
- Summary: The northern Great Plains have long been dominated by conventional tillage systems and cereal-based rotations including summer fallow. Over the last decade, however, the use of conservation tillage systems has markedly increased and, through improved moisture storage, has provided an opportunity for more diversified extended rotations including oilseed, pulse, and forage crops throughout the region. Considerable research is being carried out to assess the adaptability of these new crops and to develop appropriate management strategies. Typically, this type of agronomic research is carried out at plot-sized research sites, with the findings then being extrapolated to surrounding regions where growing conditions are thought to be reasonably similar. Because the environment itself largely dictates the success of a particular cropping system, extrapolation requires knowledge of the environmental conditions of the region and, in particular, the interaction of environmental components of soil and climate in relation to specific crop requirements. This paper describes 14 agroecoregions in the northern Great Plains and provides an initial framework for extrapolating agronomic information at broad regional scales. Because climate is the dominant crop production factor in the region, most of the agroecosystems represent broad climatic zones. Each agroecoregion is described in terms of its soil and landscape characteristics, with a particular focus being given to likely key environmental parameters related to the production of the new oilseed, pulse, and forage crops being introduced in the region.
- Authors:
- Delaney, D. P.
- Reeves, D. W.
- Source: E. van Santen (ed.) 2002. Making Conservation Tillage Conventional: Building a Future on 25 Years of Research. Proc. of 25th Annual Southern ConservaÂtion Tillage Conference for Sustainable Agriculture. Auburn, AL, 24-26 June 2002. Special Report no. 1.
- Year: 2002
- Summary: Intensive cropping and conservation tillage can increase soil organic C (SOC) and improve soil quality, however, economic reality often dictates cotton ( Gossypium hirsutum) monoculture. We conducted a study on a Compass loamy sand (coarse-loamy, siliceous, subactive, thermic Plinthic Paleudults) from 1998-2001 to compare an intensive conservation cropping system to standard cotton production systems used in the southeastern USA (Alabama). The system uses sunn hemp ( Crotalaria juncea) and ultra-narrow row (UNR; 8-inch drill) cotton in a rotation with wheat ( Triticum aestivum) and maize ( Zea mays). The standard systems used continuous cotton (both standard 40-inch rows and ultra-narrow row) and a maize-cotton rotation with standard row widths. A cover crop mixture of black oat ( Avena strigosa [ A. nuda])/rye ( Secale cereale) was used in all systems preceding cotton and a white lupin ( Lupinus albus)/crimson clover ( Trifolium incarnatum) mix was used before maize in the maize-cotton and intensive system. All systems were tested under conservation and conventional tillage in a split plot design of four replications; main plots were cropping systems and subplots were tillage. We used extension budgets to calculate net returns over variable costs and determined C balance of all residues returned to the soil. At the end of the experiment, soil C was determined by dry combustion (0-0.4, 0.4-2, 2-4, 4-8, and 8-12 in depths). Cropping system had a more consistent effect on cotton yield than tillage system. Four-year average lint yields were 872, 814, 711 and 663 lbs acre -1 for continuous UNR, intensive, maize-cotton, and continuous 40-in cotton systems, respectively. The UNR systems with conservation tillage had the highest net returns ($105 acre -1 year -1 (continuous) and $97 acre -1 year -1 (intensive)) while the conventional tillage continuous 40-in system had the lowest returns ($36 acre -1 year -1). Conservation tillage increased SOC concentration in the top 2 inches of soil 46% compared to conventional tillage. Cropping system affected SOC levels to the 4-in depth and the maize-cotton rotation resulted in the lowest SOC levels of all systems. Results suggest that small grain cover crops and wheat for grain in the intensive system were the dominate factor in SOC changes. For these drought-sensitive soils, UNR cotton production systems with conservation tillage and small grain cover or cash crops have the potential to rapidly increase soil organic matter; improving soil productivity and enhancing economic sustainability of cotton production in the southeastern USA.
- Authors:
- Blackshaw, R. E.
- Anderson, R. L.
- Derksen, D. A.
- Maxwell, B.
- Source: Agronomy Journal
- Volume: 94
- Issue: 2
- Year: 2002
- Summary: Cropping systems in the northern Great Plains (NGP) have evolved from wheat Triticum aestivum L.)-fallow rotations to diversified cropping sequences. Diversification and continuous cropping have largely been a consequence of soil moisture saved through the adoption of conservation tillage. Consequently, weed communities have changed and, in some cases, become resistant to commonly used herbicides, thus increasing the complexity of managing weeds. The sustainability of diverse reduced tillage systems in the NGP depends on the development of economical and effective weed management systems. Utilizing the principle of varying selection pressure to keep weed communities off balance has reduced weed densities, minimized crop yield losses, and inhibited adverse community changes toward difficult-to-control species. Varied selection pressure was best achieved with a diverse cropping system where crop seeding date, perennation, and species and herbicide mode of action and use pattern were inherently varied. Novel approaches to cropping systems, including balancing rotations between cereal and broadleaf crops, reducing herbicide inputs, organic production, fall-seeded dormant canola (Brassica napus and B. rapa), and the use of cover crops and perennial forages, are discussed in light of potential systems-level benefits for weed management.
- Authors:
- Kling, C. L.
- Babcock, B. A.
- Kurkalova, L. A.
- Pautsch, G. R.
- Source: Contemporary Economic Policy
- Volume: 19
- Issue: 2
- Year: 2001
- Summary: Agricultural tillage practices are important human-induced activities that can alter carbon emissions from agricultural soils and have the potential to contribute significantly to reductions in greenhouse gas emission (Lal et al., The Potential of U.S. Cropland, 1998). This research investigates the expected costs of sequestering carbon in agricultural soils under different subsidy and market-based policies. Using detailed National Resources Inventory data, we estimate the probability that farmers adopt conservation tillage practices based on a variety of exogenous characteristics and profit from conventional practices. These estimates are used with physical models of carbon sequestration to estimate the subsidy costs of achieving increased carbon sequestration with alternative subsidy schemes.
- Authors:
- Boehm, M.
- Grant, B.
- Smith, W.
- Junkins, B.
- Kulshreshtha, S. N.
- Desjardins, R. L.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 60
- Issue: 1-3
- Year: 2001
- Summary: In 1991, on farm management practices contributed 57.6 Tg CO2 equivalent in greenhouse gas emissions, that is, about 10% of the anthropogenic GHG emissions in Canada. Approximately 11% of these emissions were in the form of CO2, 36% in the form of CH4 and 53% in the form of N2O. The CO2 emissions were from soils; CH4 emissions were from enteric fermentation and manure, and N2O emissions were primarily a function of cropping practices and manure management. With the emissions from all other agricultural practices included, such as the emissions from fossil fuels used for transportation, manufacturing, food processing etc., the agricultural sector's contributions were about 15% of Canada's emissions. In this publication, several options are examined as to their potential for reducing greenhouse gas emissions. These involve soil and crop management, soil nutrient management, improved feeding strategies, and carbon storage in industrial by-products. The Canadian Economic Emissions Model for Agriculture (CEEMA) was used to predict the greenhouse gas emissions for the year 2010, as well as the impact of mitigation options on greenhouse gas emissions from the agricultural sector. This model incorporates the Canadian Regional Agricultural sub-Model (CRAM), which predicts the activities related to agriculture in Canada up to 2010, as well as a Greenhouse Gas Emissions sub-Model (GGEM), which estimates the greenhouse gas emissions associated with the various agricultural activities. The greenhouse gas emissions from all agricultural sources were 90.5 Tg CO2 equivalent in 1991. Estimates based on CEEMA for the year 2010 indicate emissions are expected to be 98.0 Tg CO2 equivalent under a business as usual scenario, which assumes that the present trends in management practices will continue. The agricultural sector will then need to reduce its emissions by about 12.9 Tg CO2 equivalent below 2010 forecasted emissions, if it is to attain its part of the Canadian government commitment made in Kyoto. Technologies focusing on increasing the soil carbon sink, reducing greenhouse gas emissions and improving the overall farming efficiency, need to be refined and developed as best management practices. The soils carbon sink can be increased through reduced tillage, reduced summer fallowing, increased use of grasslands and forage crops, etc. Key areas for the possible reduction of greenhouse gas emissions are improved soil nutrient management, improved manure storage and handling, better livestock grazing and feeding strategies, etc. The overall impact of these options is dependent on the adoption rate. Agriculture's greenhouse gas reduction commitment could probably be met if soils are recognized as a carbon sink under the Kyoto Accord and if a wide range of management practices are adopted on a large scale. None of these options can currently be recommended as measures because their socio-economic aspects have not been fully evaluated and there are still too many uncertainties in the emission estimates.
- Authors:
- Kascak, C. A.
- Fuglie, K. O.
- Source: Applied Economic Perspectives and Policy
- Volume: 23
- Issue: 2
- Year: 2001
- Summary: A national sample of U.S. farms is used to estimate the long-term trends in adoption and diffusion of conservation tillage, IPM, and soil fertilizer testing, technologies designed to reduce environmental exteralities from agriculture. Results from a duration model show that diffusion of these technologies has been relatively slow, with long lags in adoption due to differences in land quality, farm size, farmer education, and regional factors.
- Authors:
- Morse, R. D.
- Miyao, E. M.
- Temple, S. R.
- Lanini, W. T.
- Mitchell, J. P.
- Herrero, E. V.
- Campiglia, E.
- Source: California Agriculture
- Volume: 55
- Issue: 1
- Year: 2001
- Summary: The efficacy of no-till systems in conserving soil moisture and improving water infiltration under furrow irrigation was evaluated during 1997 and 1998 in California, USA. Two grass/legume mixtures, i.e. triticale/lana woolypod vetch (* Triticosecale/ Vicia dasycarpa [ V. villosa]) and rye/lana woolypod vetch ( Secale cereale/ V. dasycarpa), were used as cover cop mulches in no-till treatments, and compared with a winter fallow treatment with pre-plant herbicide (fallow +h) and a fallow control treatment with no herbicide (fallow -h). Tomato cv. Halley 3155 plants were transplanted in April 1997 and 1998, sprinkle irrigated during the first 6 weeks after transplanting, and furrow irrigated thereafter until 3 weeks before harvest. During 1997, soil water content between 0 and 78 inches did not differ among treatments, while soil water content during the 1997/98 winter was higher under the fallow +h than the cover crop treatments until cover crop termination. Soil water content of cover crop treatments in shallower soil layers (18 and 42 inches) was significantly lower than fallow treatments at the end of the winter. During the 1998 tomato crop season, soil water content between 0 and 90 inches was greater under the triticale and rye mulches than the fallow +h, beginning the 3rd week after furrow irrigations were started. Soil moisture in the shallower layers was also affected by cover crop mulches. In the 42-inch depth increment, there was significantly higher water content under the cover crops than under the fallow +h from about 1 month after the first furrow irrigation until 2 weeks before the last irrigation. Changes in soil water content during furrow irrigation under the fallow +h treatment appeared to be more pronounced than under the triticale or rye surface mulches. Soil compaction in the fallow +h treatment was higher than under the cover crop mulches for most of the 0.6-inch intervals, especially below 1 foot, but differences were significantly higher only for the 3, 3.6, 4.2, 17, 18, and 24-inch depth, but lower from the surface to 2.4 inches. Soil carbon was significantly higher (by 14 and 18%) under triticale and rye, respectively, compared with the fallow +h treatment. The number of earthworms was also higher in no-till (2.1 earthworms per square foot) than in the fallow treatments (0.6 earthworms). Tomato canopy growth did not reach 100% cover in either 1997 or 1998, while tomato plant growth, assessed by measuring the photosynthetically active radiation intercepted by the canopy, did not differ in the triticale, rye, and fallow +h system in either 1997 or 1998. Results showed that the no-till mulch system enhanced water infiltration and soil water conservation.
- Authors:
- Source: Soil & Tillage Research
- Volume: 61
- Issue: 1/2
- Year: 2001
- Summary: One of the most important terrestrial pools for carbon (C) storage and exchange with atmospheric CO 2 is soil organic carbon (SOC). Following the advent of large-scale cultivation, this long-term balance was disrupted and increased amounts of SOC were exposed to oxidation and loss as atmospheric CO 2. The result was a dramatic decrease in SOC. If amounts of C entering the soil exceed that lost to the atmosphere by oxidation, SOC increases. Such an increase can result from practices that include improved: (1) tillage management and cropping systems, (2) management to increase amount of land cover, and (3) efficient use of production inputs, e.g. nutrients and water. Among the most important contributors is conservation tillage (i.e., no-till, ridge-till, and mulch-tillage) whereby higher levels of residue cover are maintained than for conventional-tillage. Gains in amount of land area under conservation tillage between 1989 and 1998 are encouraging because of their contributions to soil and water conservation and for their potential to sequester SOC. Other important contributors are crop residue and biomass management and fallow reduction. Collectively, tillage management and cropping systems in the US are estimated to have the potential to sequester 30-105 million metric tonnes of carbon (MMTC) year -1. Two important examples of management strategies whereby land cover is increased include crop rotations with winter cover crops and the conservation reserve programme (CRP). Such practices enhance SOC sequestration by increasing the amount and time during which the land is covered by growing plants. Crop rotations, winter cover crops, and the CRP combined have the potential to sequester 14-29 MMTC year -1. Biomass production is increased by efficient use of production inputs. Optimum fertility levels and water availability in soils can directly affect quantity of crop residues produced for return to the soil and for SOC sequestration. Nutrient inputs and supplemental irrigation are estimated to have the potential to sequester 11-30 MMTC year -1. In the future, it is important to acquire an improved understanding of SOC sequestration processes, the ability to make quantitative estimates of rates of SOC sequestration, and technology to enhance these rates in an energy- and input-efficient manner. Adoption of improved tillage practices and cropping systems, increased land cover, and efficient use of nutrient and water inputs are examples where such information is necessary.
- Authors:
- Rivero, M. L.
- Sasal, C.
- Andriulo, A.
- Source: Siembra Directa II
- Year: 2001
- Summary: Notes are given on the role of conservation production in the reduction of greenhouse gases. Responses of soil carbon to agricultural practices, the introduction of agriculture to native vegetation, and conversion of cultivated land to perennial vegetation are discussed. The effects of tillage, integration of residues, mulching and cover crops are also considered. Emissions and capture of carbon dioxide in rough pampas are described, with reference to continuous agriculture, conservation production and potential for capture of carbon by conservation production systems.