- Authors:
- Hernandez, R. M.
- Bravo, C.
- Rivero, C.
- Lozano P.,Z.
- Source: REVISTA DE LA FACULTAD DE AGRONOMIA DE LA UNIVERSIDAD DEL ZULIA
- Volume: 28
- Issue: 1
- Year: 2011
- Summary: Some researchers suggest the use of different SOM organic matter (SOM) fractions or compartiments like indicators of the agricultural systems sustainability. In order to evaluate the amount, composition and distribution in the profile of different SOM fractions from the soil on conservation agriculture systems, evaluations in an Ustoxic Quartzipsament soil located at Venezuelan savannahs, were carried out. Three cover crop treatments were evaluated, as improved land fallows for the establishing of maize no-tillage system and grazing with ovine cattle: Brachiaria dictyoneura (BD), Centrosema macrocarpum (CM), and spontaneous vegetation (SV), and its comparison with the natural savannah ecosystem (NS). Samples to three depths (0-5, 5-15 and 15-30 cm), and were taken at three times: initial, 286 days after the establishment (dae), and 1463 dae. At all depths and to 1463 dae were evaluated: total organic carbon (TOC), hidrosoluble carbon (HSC), and particulate organic matter carbon (POMC). At all times and in the the 0 to 5 cm layer physical and chemical fractions of the SOM, were evaluated. The results show statistical differences between cover crops types in some SOM fractions, mainly in the light fractions (HSC, and fulvic acid carbon), with the greater values in BD and the minors in SV. The cover crops introduction produced the diminution in some fractions; but after three continuous cycles under the proposed management, these fractions reached similar values or superior to those initials. The humification indexes, and the relations between the different fractions and the TOC, were the most sensible indicators.
- Authors:
- Stoddard, F. L.
- Santanen, A.
- Turakainena, M.
- Tuulos, A.
- Mäkelä, P. S. A.
- Source: Acta Agriculturae Scandinavica, Section B - Soil &
Plant Science
- Volume: 61
- Issue: 3
- Year: 2011
- Summary: Winter turnip rape (Brassica rapa spp. oleifera) is an underutilized crop that deserves to be revitalized for use in high-latitude agriculture. Many crop rotations around the world are dependent on the small-grain cereals, and turnip rape as a break crop, with its range of secondary chemicals, helps to suppress weeds, nematodes and pathogenic fungi. It may be used as an energy crop, it can restrict erosion and nutrient leaching while also improving soil structure and fertility, and it requires relatively low inputs. Although winter turnip rape was once the major oil crop in Finland, in the 1970s it was replaced by spring turnip rape, the lower erucic acid and glucosinolate contents of which made it suitable for food and feed uses. Winter hardiness of the crop could be improved, and industrial end uses, such as lubricants for which high erucic acid content is preferred, targeted in the first instance. Breeding progress would be accelerated by a change from the predominantly self-incompatible breeding system to self-compatibility, now available in modern germplasm, and this would allow use of other rapid breeding methods, such as doubled haploidy. Thus, the many advantages of the winter turnip rape crop would repay its return to agriculture. In this review we will introduce the many utilization possibilities of the crop as well as give background on why more attention and research efforts should be paid towards this crop. We will also indicate some of the array of factors that have a marked role in an attempt to ecologically intensify crop production.
- Authors:
- Ralish, R.
- de Lima, G. P.
- Rosa, D. M.
- Pereira Nóbrega, L. H.
- Mauli, M. M.
- Source: Brazilian Archives of Biology and Technology
- Volume: 54
- Issue: 4
- Year: 2011
- Summary: This study analyzed possible interferences associated to the amount of crop residues produced by the black oats and the consortium of black oats, common vetch and forage turnip on weeds incidence and soil seed bank. It was a field trial with seven treatments and five replications. The cover crop was sown at throwing, cut at 100 days and residues were put on each respective plot, using a proportion of normal amount of produced straw, either its half and double. The heaviest weights were obtained from cover crop consortium and their application decreased weeds incidence in such area. The seeds bank and other analyzed parameters did not show statistical differences. According to these results, it was concluded that winter cover crop could be used in crops rotation with soybean.
- Authors:
- Risaliti, R.
- Antichi, D.
- Barberi, P.
- Sapkota, T. B.
- Mazzoncini, M.
- Source: Soil & Tillage Research
- Volume: 114
- Issue: 2
- Year: 2011
- Summary: No-tillage, N fertilization and cover crops are known to play an important role in conserving or increasing SOC and STN but the effects of their interactions are less known. In order to evaluate the single and combined effects of these techniques on SOC and STN content under Mediterranean climate, a long term experiment started in 1993 on a loam soil (Typic Xerofluvent) in Central Italy. The experimental variants are: conventional tillage (CT) and no-tillage (NT), four N fertilization rates (N0, N1, N2 and N3) and four soil cover crop (CC) types (C - no cover crop; NL - non-legume CC; LNL - low nitrogen supply legume CC, and HNL - high nitrogen supply legume CC). The nitrogen fertilization rates (N0, N1, N2 and N3) were: 0, 100, 200, 300 kg N ha(-1) for maize (Zea mays, L); 0, 60, 120,180 kg N a(-1) for durum wheat (Triticum durum Desf.); 0, 50, 100, 150 kg N ha(-1) for sunflower (Helianthus annuus L.). From 1993 to 2008, under the NT system the SOC and STN content in the top 30 cm soil depth increased by 0.61 and 0.04 Mg ha(-1) year(-1) respectively. In the same period, the SOC and STN content under the CT system decreased by a rate of 0.06 and 0.04 Mg ha(-1) year(-1) respectively. During the experimental period, N1, N2 and N3 increased the SOC content in the 0-30 cm soil layer at a rate of 0.14, 0.45 and 0.49 Mg ha(-1) year(-1). Only the higher N fertilization levels (N2 and N3) increased STN content, at a rate of 0.03 and 0.05 Mg ha(-1) year(-1). NL, LNL and HNL cover crops increased SOC content by 0.17, 0.41 and 0.43 Mg C ha(-1) year(-1) and -0.01, +0.01 and +0.02 Mg N ha(-1) year(-1). Significant interactions among treatments were evident only in the case of the N fertilization by tillage system interaction on SOC and STN concentration in the 0-10 cm soil depth in 2008. The observed SOC and STN variations were correlated to C returned to the soil as crop residues, aboveground cover crop biomass and weeds (C input). We conclude that, under our Mediterranean climate, it is easier to conserve or increase SOC and STN by adopting NT than CT. To reach this objective, the CT system requires higher N fertilization rates and introduction of highly productive cover crops. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Source: Nematropica
- Volume: 41
- Issue: 2
- Year: 2011
- Summary: Studies that utilized rotation crops for management of root-knot nematodes in the southeastern United States were examined to evaluate the overall performance of rotation crops. In general, nematode-susceptible crops that followed effective rotation crops produced yields and supported nematode numbers similar to those obtained on crops treated with most standard nematicides. Fumigation with methyl bromide was an exception, and resulted in low nematode numbers up to the end of the susceptible target crop, whereas nematode numbers recovered following rotation crops. Performance of rotation crops was similar to clean fallow in most studies, and there was little evidence that rotation crops could suppress nematode numbers below levels obtained after clean fallow. Large reductions in nematode numbers often were achieved following rotation crops. In sites with relatively low initial population levels before rotation crops were used, effective rotation crops sometimes maintained relatively low nematode numbers through the following susceptible target crop, and nematode recovery was not observed until the second year of the rotation sequences. Where practical, very long rotations such as bahiagrass pastures were often effective in preventing increase in nematode numbers on subsequent susceptible crops. Rehabilitation of heavily infested sites is difficult, could require several years of rotation crops, and the benefit gained may last only through one susceptible crop.
- Authors:
- Ball, L. O.
- Vandever, M. W.
- Milchunas, D. G.
- Hyberg, S.
- Source: Rangeland Ecology & Management
- Volume: 64
- Issue: 3
- Year: 2011
- Summary: The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of research.
- Authors:
- Source: African Journal of Agricultural Research
- Volume: 6
- Issue: 1
- Year: 2011
- Summary: Much of the smallholder farming sector in Limpopo province of South Africa is located on infertile degraded soils, with nitrogen being one of the predominantly deficient nutrient. The use of green manure legume cover crops in combination with Nitrogen (N) fertilizers is one option for improving N inputs into such farming systems. The objectives of this study were to (1) screen a number of green manure legume cover crop species, mucuna (Mucuna pruriens); sunhemp (Crotalaria juncea), lab-lab (Lablab purpureus); cowpea (Vigna unguiculata) and butterfly pea (Clitoria ternatea) in order to determine their suitability for the region and (2) to determine the effect of the green manure and nitrogen fertilizer on maize yield. The legumes were screened during the winter seasons of 2005 and 2006 and the summer seasons of 2005 - 2006 and 2006 - 2007. The best-bet legumes (mucuna, sunhemp and lab-lab) were then evaluated to determine their effect on maize grain yield with or without nitrogen fertilizer. The treatments imposed were mucuna, sunhemp, lab-lab, and a control with (75 kg N ha(-1)) or without (0 kg N ha(-1)) N fertilizer. Maize was harvested at maturity to determine the grain yield. In the screening trials, legume biomass yield ranged between 41 to 1,672 kg ha(-1), while the N content ranged between 2 to 58 kg N ha(-1) in the winter trials. In the summer trials, biomass yield ranged from 899 to 13,586 kg ha(-1), while the N content ranged between 27 to 302 kg N ha(-1). Maize yield ranged between 4.0 to 6.4 tons ha(-1) in the 2006 - 2007 seasons and between 5.8 to 8.4 tons ha(-1) in the 2007 - 2008 season. Control (-N) treatment had the lowest yield in both seasons. Overall, legume treatments, with or without N fertilizers produced between 19 to 58% more grain yield than control (-N). Of the green manure legumes screened, mucuna, lablab and sunhemp seem to be the most suitable green manure legume cover crops for this area and should be planted in the early summer season to maximize biomass production and N accumulation. Use of green manure legumes has the potential to increase maize yield in smallholder farms in Limpopo province.
- Authors:
- Van Eerd, L. L.
- Vyn, R. J.
- Robinson, D. E.
- O'Reilly, K. A.
- Source: Weed Technology
- Volume: 25
- Issue: 3
- Year: 2011
- Summary: The effectiveness of cover crops as an alternative weed control strategy should be assessed as the demand for food and fiber grown under sustainable agricultural practices increases. This study assessed the effect of fall cover crops on weed populations in the fall and spring prior to sweet corn planting and during sweet corn growth. The experiment was a split-plot design in a pea cover-cover crop-sweet corn rotation with fall cover crop type as the main plot factor and presence or absence of weeds in the sweet corn as the split-plot factor. The cover crop treatments were a control with no cover crop (no-cover), oat, cereal rye (rye), oilseed radish (OSR), and oilseed radish with rye (OSR+rye). In the fall, at Ridgetown, weed biomass in the OSR treatments was 29 and 59 g m(-2) lower than in the no-cover and the cereal treatments, respectively. In the spring, OSR+rye and rye reduced weed biomass, density, and richness below the levels observed in the control at Bothwell. At Ridgetown in the spring, cover crops had no effect on weed populations. During the sweet corn season, weed populations and sweet corn yields were generally unaffected by the cover crops, provided OSR did not set viable seed. All cover crop treatments were as profitable as or more profitable than the no-cover treatment. At Bothwell profit margins were highest for oat at almost Can$600 ha(-1) higher than the no-cover treatment. At Ridgetown, compared with the no-cover treatment, OSR and OSR+rye profit margins were between Can$1,250 and Can$1,350 ha(-1) and between Can$682 and Can$835 ha(-1), respectively. Therefore, provided that OSR does not set viable seed, the cover crops tested are feasible and profitable options to include in sweet corn production and provide weed-suppression benefits.
- Authors:
- Rosolem, C. A.
- dos Santos, G. P.
- Castoldi, G.
- Pivetta, L. A.
- Source: Pesquisa Agropecuária Brasileira
- Volume: 46
- Issue: 11
- Year: 2011
- Summary: The objective of this work was to assess winter and spring crop effects on soybean root system growth, and on yield, and to compare a direct method (soil core sampling) with an indirect method (with rubidium) in evaluating the root system. The experimental design was a randomized complete block design, in a split-plot arrangement, with four replicates. Plots consisted of the winter crops, triticale (X Triticosecale) and sunflower (Helianthus annuus), and subplots of the spring crops, pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor) and sunn hemp (Crotalaria juncea), besides chisel tillage in 2003 and 2009. Soybean (Glycine max) was grown in the summer, and its root system was evaluated by physical sampling of the roots and by root activity assessment using rubidium. Changes in the architecture or in the activity of soybean roots did not affect yield. The distribution and activity of soybean roots were not significantly affected by the winter cover crops, but root growth was favored after millet and sorghum were grown in the spring. The direct measurement of the soybean root system with an auger has low correlation with root activity.
- Authors:
- Nonnecke, G. R.
- Portz, D. N.
- Source: HortScience
- Volume: 46
- Issue: 10
- Year: 2011
- Summary: Yield of strawberry grown continuously on the same site often declines over time as a result of proliferation of weed seeds and pathogenic organisms in the soil. Plots were established and maintained in seven different cover crops and as continuous strawberry or continuous tillage for 10 years (1996 to 2005) in a site that was previously in strawberry production for 10 years (1986 to 1995). Cover crops included blackeyed Susan (Rudbeckia hirta L.), sorghum Sudangrass [Sorghum bicolor (L.) Moench], marigold (Tagetes credo L.), big bluestem (Andropogon gerardii Vitman), perennial ryegrass (Lolium permute L.), switchgrass (Panicum virgatum L.), and Indiangrass [Sorghastrum nutans (L.) Nash]. Treatments were ended in 2005 and plots were planted with 'Honeoye' strawberry in a matted row. Effectiveness of soil pretreatments in reducing weed populations and enhancing strawberry production was evaluated for four growing seasons by quantifying weed growth by type and biomass and strawberry plant density and yield. The results indicate that matted-row strawberry production plots that were either in continuous tillage or established in S. bicolor, P. virgatum, or A. gerardii before planting strawberry had lower weed biomass and greater strawberry plant establishment and yield than plots established in L. permute or R. hirta or that had supported continuous strawberry production.