• Authors:
    • Rossoni-Longnecker, L.
    • Janke, R. R.
    • Drinkwater, L. E.
  • Source: Plant and Soil
  • Volume: 227
  • Issue: 1
  • Year: 2000
  • Summary: Abstract In 1988 an experiment was established at the Rodale Institute Experimental Farm to study weed control and nitrogen (N) management in rotations with grain crops and N-fixing green manures under reduced tillage without the use of herbicides. Tillage intensities ranging from moldboard plow (MP) to continuous no-till (NT) were compared. We present results for maize production in 1994, the seventh year of the experiment. Our goal was to further investigate reduced tillage regimes that alternated no-till with different forms of primary tillage in legume-based systems. In the chisel-disc (CD) and MP treatments comparable yields were achieved under so-called organic (weeds controlled with cultivation and green manure N source) and conventional management (weeds controlled with herbicides and mineral N fertilizer applied). Weed competition in these treatments was minimal and the N status of maize plants was essentially the same regardless of the N source (fertilizer or green manure). Of the four organic no-till maize treatments, only the mixed-tillage system with cultivation for weed control (CD-NTc) produced yields comparable to conventional NT maize. The fate of vetch N as well as temporal N dynamics were largely determined by tillage intensity and the handling of the vetch residues at maize planting. Treatments with primary tillage (CD and MP) had extremely high levels of mineral N early in the season and had greater average net N-mineralization, even though N content of hairy vetch in these treatments was equal to or lower than that in treatments with mow-killed vetch. In terms of soil mineral N concentrations, the CD-NTc treatment was similar to the other mow-killed vetch/no-till maize treatments. However, N availability in this treatment was greater, probably due to more complete decomposition of green manure residues. Cultivation for weeds not only helped control weeds but also increased mineralization of the vetch residues, which in turn increased the N supply during the period of maximum N demand by the maize. Carefully designed rotations combining tillage reductions with the use of leguminous N sources can have multiple benefits, including improved timing of N availability, reduced herbicide applications, and improved soil quality in the long term.
  • Authors:
    • Blomert, B.
    • Gregorich, E. G.
    • Roloff, G.
    • Liang, B. -C.
    • Zentner, R. P.
    • Campbell, C. A.
  • Source: Canadian Journal of Soil Science
  • Volume: 80
  • Issue: 1
  • Year: 2000
  • Summary: Because crop management has a strong influence on soil C, we analyzed results of a 30-yr crop rotation experiment, initiated in 1967 on a medium textured Orthic Brown Chernozem at Swift Current, Saskatchewan, to determine the influence of cropping frequency, fertilizers and crop types on soil organic C (SOC) changes in the 0- to 15-cm depth. Soil organic C in the 0- to 15-cm and 15- to 30-cm depths were measured in 1976, 1981, 1984, 1990, 1993, and 1996, but results are only presented for the 0- to 15-cm depth since changes in the 15- to 30-cm depth were not significant. We developed an empirical equation to estimate SOC dynamics in the rotations. This equation uses two first order kinetic expressions, one to estimate crop residue decomposition and the other to estimate soil humus C mineralization. Crop residues (including roots) were estimated from straw yields, either measured or calculated from grain yields. The parameter values in our equation were obtained from the scientific literature or were based on various assumptions. Carbon lost by wind and water erosion was estimated using the EPIC model. We found that (i) SOC was increased most by annual cropping with application of adequate fertilizer N and P; (ii) that frequent fallowing resulted in lowest SOC except when fall-seeded crops, such as fall rye (Secale cereale L.), that reduce erosion were included in the rotation, and (iii) the fallow effects are exacerbated when low residue yielding flax (Linum usitatissimum L.) was included in the rotation. Some of the imprecision in SOC values we speculated to be related to variations in soil texture at the test site. In the first 10 yr of the experiment, SOC was low and constant for fallow-spring wheat (Triticum aestivum L.) (F-W) and F-W-W rotations because this land was managed in this manner for the previous 50 yr. However, in rotations that received N + P fertilizer and were cropped annually [continuous wheat (Cont W) and wheat-lentil (Lens culinaris L.)], or that included fall-seeded crops (e.g., F-Rye-W),SOC appeared to increase sharply in this period. In the drought period (1984–1988) SOC was generally constant, but large increases occurred in the wet period (1990 to 1996) in response to high residue inputs. The efficiency of conversion of residue C to SOC for the 30-yr experimental period was about 10–12% for F-W, F-W-W and Cont W (+P) systems, and it was about 17–18% for the well fertilized F-Rye-W, Cont W, and W-Lent systems. The average annual SOC gains (Mg ha–1 yr–1) between 1967 and 1996 were 0.11 for F-W (N + P), 0.09 for the mean of the three F-W-W rotations (N + P, + N, + P), 0.23 for F-Rye-W (N + P), 0.32 for Cont W (N + P), 0.12 for Cont W (+ P), and 0.28 for W-Lent (N + P). The corresponding mean estimated (by our equation) annual SOC gains for these rotations, were 0.06, 0.10, 0.16, 0.22, 0.14, and 0.22 Mg ha–1 yr–1, respectively. Because soil C measurements are usually so variable, we recommend that calculations such as ours may be employed to assist in the interpretation of measured C trends and to test if they seem reasonable.
  • Authors:
    • Tonkin, C. J.
    • Dellow, J. J.
    • Mullen, C. L.
  • Source: Weed control in winter crops 2000 Weed control in winter crops 2000.
  • Year: 2000
  • Summary: This guide provides information on chemical weed control in New South Wales, Australia, for the following winter crops: wheat; barley; oats; rye; triticale; canola [rape]; safflower; lentils; linseed; lupins; chickpeas; faba beans; field pea; and fallows.
  • Authors:
    • Powell, C.
  • Source: New South Wales Department of Agriculture
  • Year: 2000
  • Summary: This report presents tabulated yield data from variety trials held in New South Wales, Australia, for barley, rape, faba beans, field peas, lentils, lupins, mixed cereals (barley, oats, triticale and wheat), oats, triticale, wheat.
  • Authors:
    • Powell, C.
  • Source: New South Wales Department of Agriculture
  • Year: 2000
  • Summary: Tabulated data on yield are presented from variety trials conducted in New South Wales, Australia, during 1999 for barley, rape, chickpeas, faba beans, field peas, lentils, lupins, mixed cereal (barley, oats, rye, triticale and wheat), oats, triticale and wheat.
  • Authors:
    • Soderstrom, M.
    • Rydberg, A.
  • Source: Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA, 16-19 July, 2000
  • Year: 2000
  • Summary: This study investigates the potential of using SPOT multispectral images of agricultural fields to distinguish spatial variation in crop-growth patterns that can be used for site-specific agricultural management. Four years of SPOT data from 1995 to 1997 and 1999 are used in this study over south-western Sweden where satellite derived yield maps are compared to data from commercial yield mapping systems. The crops included rape, wheat, barley, meadow fescue [Festuca pratensis], oats, peas and rye. Our concept of crop growth maps is intended for use in areas where yield mapping, soil sampling and ground spectral measurements are not available. Maps of crop growth variability produced by clustering processes applied to images of the Normalized Difference Vegetation Index are compared to clustering of yield maps from the same years. Qualitative yield estimation is derived by dividing each field into several thematic classes, going from lowest to highest potential yield within a particular field. Qualitative comparisons are made within each field. For one year, the satellite data are also compared to three traditional yield maps derived from the same set of yield data. For a few fields where the time of image acquisition coincides with stages of optimum grain fill, high correlations were obtained between yield and NDVI. This study illustrates that satellite images can be a useful tool in precision agriculture management. The clusters created from the NDVI images show similar patterns as clusters created from the yield maps.
  • Authors:
    • Clark, K.
  • Source: Regional on-farm experiments 1999: Deniliquin, Finley, Hillston, Leeton & Beckom agronomy districts
  • Year: 2000
  • Summary: Tabulated yield data are presented from variety trials conducted throughout New South Wales, Australia, for barley, rape, lentils, lupins, oats, peas, wheat and narbon ( Vicia narbonensis).
  • Authors:
    • Avci, M.
  • Source: Efficient soil water use: the key to sustainable crop production in the dry areas of West Asia, and North and Sub-Saharan Africa. Proceedings of the workshops organized by the Optimizing Soil Water Use Consortium, Niamey, Niger, 26-30 April, 1998, Amman, J
  • Year: 1999
  • Summary: Semi-arid areas cover about 55% of Turkey and are mainly found in the Central Anatolian Plateau. The main crop production systems are fallow/wheat and legume/wheat. Wheat is generally prone to droughts, which severely affect the yields. Research on soil moisture use in fallow-wheat systems started in the 1930s. Its focus was on water interception and conservation techniques, and detailed research on rainfall interception led to practices which have been adopted by most of the plateau farmers. In the 1980s research focused on the replacement of fallow by a crop in the rotation systems. In most areas, fallow can best be replaced in terms of yield by forage crops and economically by edible legumes. Characterization of the other regions will identify fallow or continuous cropping target areas, and extrapolation of research results to them. Regarding technologies, the importance of terracing for moisture conservation increases with the degree of slope and the occurrence of erosive rainfall. Contour tillage and sowing were effective only on steep slopes. Future research is needed on supplemental irrigation to increase the water-use efficiencies of the wheat and barley varieties especially developed for irrigation.
  • Authors:
    • Cadrin, F.
    • Fan, M. X.
    • MacKenzie, A. F.
  • Source: Journal of Environmental Quality
  • Volume: 27
  • Issue: 3
  • Year: 1998
  • Summary: Nitrous oxide (N2O) produced from agricultural activities must be determined if management procedures to reduce emissions are to be established. From 1994 to 1996, N2O emissions were determined using a closed chamber technique. Continuous corn (Zea mays L.) at four N rates of 0, 170, 285, and 400 kg of N ha-1 was used on a Ste. Rosalie heavy clay (a very-fine-silty, mixed, nonacid, frigid Typic Humaquept) and a Chicot sandy loam (a fine-loamy, frigid, Typic Hapludalf). On two additional sites, a Ste. Rosalie clay and an Ormstown silty clay loam (a fine-silty, mixed, nonacid, frigid Humaquept) no-till (NT) and conventional tillage (CT); monocultural corn (CCC), monocultural soybean (Glycine max L.) (SSS); corn-soybean (SSC, CCS); and soybean-corn-alfalfa (Medicago sativa L.) phased rotations (SAC, CSA, and ACS) were used. Nitrogen rates of 0, 90, and 180 kg of N ha-1 for corn and 0, 20, and 40 kg of N ha-1 for SSS were used. Rates of N2O emission were measured from April to November in 1994 and 1995, and from mid-March to mid-November in 1996. Maximum N2O emissions reached from 120 to 450 ng of N m-2 s-1 at the Ormstown site to 50 to 240 ng of N m-2 s-1 at the Ste. Rosalie soil. Generally, N2O emissions were higher in the NT systems, with corn, and increased linearly with increasing N rates, and amounted to 1.0 to 1.6% of fertilizer N applied. The N2O emission rates were significantly related to soil denitrification rates, water-filled pore space, and soil NH4 and NO3 concentrations. A corn system using conventional tillage, legumes in rotation, and reduced N fertilizer would decrease N2O emission from agricultural fields.
  • Authors:
    • Gordon, WB
    • Maddux, LD
    • Rice, CW
    • Omay, AB
  • Source: Soil Science Society of America Journal
  • Volume: 62
  • Issue: 6
  • Year: 1998
  • Summary: Increasing crop N use efficiency and minimizing environmental risk require an accurate assessment of N taken up by the crop from different sources. We conducted this study to: (i) compare the grain yields of corn (Zea mays L.) in monoculture and in rotation with soybean [Glycine max (L,) Merr,]; (ii) determine the contributions of N from fertilizer, soil, and legume residue to corn in the rotation; and (iii) compare N fertilizer recovery in monoculture and in rotation. Two existing (>10 yr) irrigated corn-soybean rotation areas in Kansas were used. The soils were Crete silt loam (fine, smectitic, mesic: Pachic Argiustolls) and Eudora loam (coarse-silty, mixed, superactive, mesic Fluventic Hapludolls). To trace the N through the rotation, N-15 microplots (2.4 m(2)) were established in the corn. Microplots also Here established in soybean to separately follow N-15 from roots + soil and shoots to corn. Crop rotation and fertilizer addition increased corn yield at both sites for two growing seasons. Averaged for 2 yr, the amount of N needed in the continuous corn to achieve yield equal to that in rotation with no N added was equivalent to 144 kg N ha(-1) in the Crete silt loam and 155 kg N ha(-1) in the Eudora loam, Response to N was greater on the Eudora loam, probably because of textural and organic matter differences. In the Eudora soil, significantly higher amounts of soil N Here taken up at harvest by corn in rotation, whereas, in the Crete soil, corn in monoculture took up significantly higher amounts of soil N, Corn plants recovered 3 kg N ha(-1) (3%) from soybean residue in the Eudora soil and 5 kg N ha(-1) (14%) in the Crete soil. The main value of legume residue appears to be longterm maintenance of soil N to ensure adequate delivery to future crops.