- Authors:
- Mitchell, C. C.,Jr.
- Reeves, D. W.
- Hubbs, M. D.
- Source: Proceedings 21st Annual Southern Conservation Tillage Conference for Sustainable Agriculture/Arkansas Agricultural Experiment Station Special Report 186
- Issue: 186
- Year: 1998
- Summary: Investigations were conducted on a Typic Hapludult in USA, to assess the effects of a 3 year rotation (cotton-grain crops plus a winter legume cover crop), a 2 year rotation (cotton-grain crops-winter legume), and 3 continuous cropping systems on soil quality after 100 years. Soil quality was better in the 3 year rotation plus legume cover crop. This was attributed to higher soil C, cation exchange capacity, water retention and water stable aggregates, and reduced surface soil strength. Under continuous cotton, soil strength was increased down to 5 in depth. N fertilizer and/or legume cover crop within continuous cotton increased soil C over the past 100 years. Because of continuous tillage over the 100 years the rotation treatments had little effect on soil extractable nutrients. The semi-quantitative assessment of the USDA-Soil Quality Kit gave higher variability of parameters relative to standard procedures. The Kit should therefore be used only to evaluate trends and comparisons.
- Authors:
- Silburn, D. M.
- Dimes, J. P.
- Nelson, R. A.
- Paningbatan, E. P.
- Cramb, R. A.
- Source: Agricultural Systems
- Volume: 58
- Issue: 2
- Year: 1998
- Summary: A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
- Authors:
- Kissel, D. E.
- Havlin, J. L.
- Source: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America
- Volume: 1
- Year: 1997
- Authors:
- Harriss, R. C.
- Narayanan, V.
- Li, C.
- Source: Global Biogeochemical Cycles
- Volume: 10
- Issue: 2
- Year: 1996
- Summary: The Denitrification-Decomposition (DNDC) model was used to elucidate the role of climate, soil properties, and farming practices in determining spatial and temporal variations in the production and emission of nitrous oxide (N[2]O) from agriculture in the United States. Sensitivity studies documented possible causes of annual variability in N[2]O flux for a simulated Iowa corn-growing soil. The 37 scenarios tested indicated that soil tillage and nitrate pollution in rainfall may be especially significant anthropogenic factors which have increased N[2]O emissions from soils in the United States. Feedbacks to climate change and biogeochemical manipulation of agricultural soil reflect complex interactions between the nitrogen and carbon cycles. A 20% increase in annual average temperature in °C produced a 33% increase in N[2]O emissions. Manure applications to Iowa corn crops enhanced carbon storage in soils, but also increased N[2]O emissions. A DNDC simulation of annual N[2]O emissions from all crop and pasture lands in the United States indicated that the value lies in the range 0.9 - 1.2 TgN. Soil tillage and fertilizer use were the most important farming practices contributing to enhanced N[2]O emissions at the national scale. Soil organic matter and climate variables were the primary determinants of spatial variability in N[2]O emissions. Our results suggest that the United States Government, and possibly the Intergovernmental Panel on Climatic Change (IPCC), have underestimated the importance of agriculture as a national and global source of atmospheric N[2]O. The coupled nature of the nitrogen and carbon cycles in soils results in complex feedbacks which complicate the formulation of strategies to reduce the global warming potential of greenhouse gas emissions from agriculture.
- Authors:
- McIntosh, M. S.
- Mulford, F. R.
- Meisinger, J. J.
- Decker, A. M.
- Clark, A. J.
- Source: Agronomy Journal
- Volume: 87
- Issue: 3
- Year: 1995
- Summary: Hairy vetch (Vicia villosa Roth) can fix N-2 for subsequent release to a corn (Zea mays L.) crop, but kill date effects on vetch N accumulation, soil water, and subsequent corn production have not been studied. A hairy vetch cover crop can deplete soil water through transpiration, but cover crop mulches can conserve soil water for no-till corn. In order to determine optimum spring kill date and corn fertilizer N (FN) rates, hairy vetch was killed early April, late April, or mid-May, followed by three corn planting dates and four FN rates (0, 45, 135, and 202 kg N ha(-1)). From early April to mid-May, hairy vetch aerial phytomass and N content increased significantly, from 2800 to 4630 and 96 to 149 kg ha(-1), respectively. Corn grain yields ranged from 5.2 to 10.1 Mg ha(-1) and were significantly greater following mid or late kill, compared with early kill of vetch, regardless of corn planting date or FN rate. Gravimetric soil water under mid- or late-kill vetch was often significantly greater than after early-kill vetch. We conclude that soil water conservation by late-killed vetch mulches had a greater influence on corn production than vetch spring water use. Optimum N production and water conservation occurred when vetch was killed the last week of April. Early-kill vetch sacrificed N production and minimized soil water conservation, resulting in reduced corn grain yield. Late kill did not add significant N benefits, but could deplete soil water or interfere with timely corn planting.
- Authors:
- Sweeney, D. W.
- Moyer, J. L.
- Source: Communications in Soil Science and Plant Analysis
- Volume: 26
- Issue: 1-2
- Year: 1995
- Summary: Legumes provide benefit in crop rotations, but data are limited on soil inorganic nitrogen (N) and soil strength responses to spring- or fall-seeded legumes as green manures for grain sorghum [Sorghum bicolor (L.) Moench] production on the prairie soils of the eastern Great Plains of the United States. With increased emphasis on conservation tillage, information is also needed on combining conservation tillage with the use of legume cover crops. This experiment was established to examine the effects of i) red clover (Trifolium pratense L.) and hairy vetch (Vicia villosa Roth.) as previous crops to grain sorghum compared with continuous grain sorghum, ii) reduced or no-tillage, and iii) fertilizer N rate on changes in soil inorganic N and soil strength. At two adjacent sites (Parsons silt loam; fine, mixed thermic Mollic Albaqualf) differing in initial pH and phosphorus (P) and potassium (K) fertility, soil nitrate-nitrogen (NO3-N) was as much as fourfold higher following kill-down of red clover or hairy vetch than following continuous grain sorghum. At the higher fertility site, soil total inorganic N [TIN: sum of ammonium-nitrogen (NH4-N) and NO3-N] shortly following kill-down of red clover exceeded TIN following hairy vetch by more than 35% and that with continuous grain sorghum by 110%; however, at the lower fertility site, the trend for soil TIN to be higher following legumes was not significant. Tillage did not affect soil NO3-N levels in the spring following legume kill-down. However, subsequent soil NO3-N levels under no-tillage tended to be higher in the spring, but lower in the fall than with reduced tillage. Increases in soil TIN by legumes and fertilizer were related to grain sorghum yield, but likely were not the only factors affecting yield. Legumes and tillage used in grain sorghum production may also provide other non-N benefits as suggested by soil penetration resistance measured at the end of the study.
- Authors:
- Sweeney, D. W.
- Moyer, J. L.
- Source: Soil Science Society of America Journal
- Volume: 58
- Issue: 5
- Year: 1994
- Summary: With increased emphasis on conservation tillage, information is needed on the use of spring- or fall-seeded legumes as green manures for eastern Great Plains grain sorghum [Sorghum bicolor (L.) Moench] production. This study was conducted to determine whether legumes can be beneficial to subsequent grain sorghum crops grown in conservation tillage systems on prairie soil. Comparisons included the effects of (i) red clover (Trifolium pratense L.) and hairy vetch (Vicia villosa Roth) before grain sorghum vs. continuous grain sorghum, (ii) reduced or no-tillage, and (iii) fertilizer N rates on grain sorghum grown on two sites of a Parsons silt loam (fine, mixed, thermic Mollic Albaqualf). Surface soil at Site 1 was higher in pH (7.2 vs. 6.2), P (12 vs. 4 mg kg(-1)), and K (80 vs. 60 mg kg(-1)) than at Site 2. Yield of the first sorghum crop after legume kill-down in 1987 ranged from 79 to 131% more than for continuous grain sorghum. At the higher fertility Site 1, red clover residual increased yields to 3.7 from 2.7 Mg ha(-1) with continuous grain sorghum in the third year; at the lower fertility Site 2, the legume residual did not influence yield after the first year. First-year grain sorghum yielded 1.1 to 1.6 Mg ha(-1) more with reduced tillage than with no-tillage, but the difference was less in subsequent years. In 1987, yield was not affected by fertilizer N even following grain sorghum, but the response was significant in subsequent years. Low N response on this high organic matter prairie soil contributed to uncertain fertilizer N equivalencies and suggested other non-N benefits from the legumes.
- Authors:
- Shennan, C.
- Stivers, L. J.
- Source: Journal of Production Agriculture
- Volume: 4
- Issue: 3
- Year: 1991
- Summary: Results from the first 2 years of the experiment are used to compare the productivity of several legume green manures and to determine if they can provide adequate available soil N to support yields of a subsequent crop of processing tomatoes (Lycopersicon lycopersicum L. Karsten var. lycopersicum) typical for this area. Lana woolly-pod vetch (Vicia dasycarpa Ten.), bell beans (Vicia faba L.), berseem clover (Trifolium alexandrinum L.), Austrian winter peas (Pisum arvense L.), oats (Avena sativa L.), and an oats and vetch mixture, planted in October and disked under in April, were compared with various levels of ammonium sulfate fertilizer.
- Authors:
- Lafond, G. P.
- Zentner, R. P.
- Biederbeck, V. O.
- Campbell, C. A.
- Source: Canadian Journal of Soil Science
- Volume: 71
- Issue: 3
- Year: 1991
- Summary: The effects of crop rotations and various cultural practices on soil organic matter quantity and quality in a Rego, Black Chernozem with a thin A horizon were determined in a long-term study at Indian Head, Saskatchewan. Variables examined included: fertilization, cropping frequency, green manuring, and inclusion of grass Jegume hay crop in predominantly spring wheat (Triticum aestiyum L.) production systems. Generally, fertilizer increased soil organic C and microbial biomass in continuous wheat cropping but not in fallow-wheat or fallow-wheat-wheat rotations. Soil organic C, C mineralization (respiration) and microbial biomass C and N increased (especially in the 7.5- to l5-cm depth) with increasing frequency of cropping and with the inclusion of legumes as green manure or hay crop in the rotation. The influence of treatments on soil microbial biomass C (BC) was less pronounced than on microbial biomass N. Carbon mineralization was a good index for delineating treatment effects. Analysis of the microbial biomass C/N ratio indicated that the microbial suite may have been modified by the treatments that increased soil organic matter significantly. The treatments had no effect on specific respiratory activity (CO2-C/BC). However, it appeared that the microbial activity, in terms of respiration, was greater for systems with smaller microbial biomass. Changes in amount and quality of the soil organic matter were associated with estimated amount and C and N content of plant residues returned to the soil.
- Authors:
- Elharis, M. K.
- Cochran, V. L.
- Elliott, L. F.
- Bezdicek, D. F.
- Source: Soil Science Society of America Journal
- Volume: 47
- Issue: 6
- Year: 1983