• Authors:
    • Blumenthal, J. M.
    • McLean, G. B.
    • Hammer, G. L.
    • Lyon, D. J.
  • Source: Agronomy Journal
  • Volume: 95
  • Issue: 4
  • Year: 2003
  • Summary: In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn ( Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m -2, depending largely on available water resources. The objective of this study was to use a modelling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m -2. Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m -2 when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha -1, and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m -2 as a base recommendation.
  • Authors:
    • Mir, Z.
    • Acharya, S. N.
    • Moyer, J. R.
    • Doram, R. C.
  • Source: Canadian Journal of Plant Science
  • Volume: 83
  • Issue: 1
  • Year: 2003
  • Summary: Fenugreek (Trigonella foenum-graecom L.) is an annual legume that has potential as a forage crop on the Canadian Prairies. Experiments were established to determine the tolerance of fenugreek to several herbicides and their efficacy on various weeds. Potentially, fenugreek could be grown in conservation tillage systems in rotation with other annual crops. Therefore, additional multi-factor experiments were conducted to determine the effect of herbicides, seeding method, and 11 previous crops on fenugreek yield. Without herbicide application, weeds contributed 37 to 86% to total dry matter production. When imazamox/imazethapyr, or-combinations of imazamoz/imazethapyr or imazethapyr with ethalfluralin was applied, weed contents were about 5% of the total dry matter and the herbicides did not reduce fenugreek yield compared to the hand-weeded check. Total forage samples with a low weed content had lower fibre content and higher protein and digestible dry matter content than forages with a high weed content. When imazamox/imazethapyr was used for weed control, fenugreek yields and weed biomass were similar after direct seeding and after cultivation plus seeding. In addition, the effect of previous crop and the previous crop by seeding method interaction was not significant for fenugreek yield and weed biomass. Therefore, irrigated fenugreek can be successfully grown in conservation tillage systems in rotation with several crops provided an effective herbicide is used for weed control.
  • Authors:
    • Bundy, L. G.
    • Andraski, T. W.
    • Kilian, K. C.
  • Source: Journal of Environmental Quality
  • Volume: 32
  • Issue: 5
  • Year: 2003
  • Summary: Manure additions to cropland can reduce total P losses in runoff on well-drained soils due to increased infiltration and reduced soil erosion. Surface residue management in subsequent years may influence the long-term risk of P losses as the manure-supplied organic matter decomposes. The effects of manure history and long-term (8-yr) tillage [chisel plow (CP) and no-till (NT)] on P levels in runoff in continuous corn (Zea mays L.) were investigated on well-drained silt loam soils of southern and southwestern Wisconsin. Soil P levels (0-15 cm) increased with the frequency of manure applications and P stratification was greater near the surface (0-5 cm) in NT than CP. In CP, soil test P level was linearly related to dissolved P (24-105 g ha(-1)) and bioavailable P (64-272 g ha(-1)) loads in runoff, but not total P (653-1893 g ha(-1)). In NT, P loads were reduced by an average of 57% for dissolved P, 70% for bioavailable P, and 91% for total P compared with CP. This reduction was due to lower sediment concentrations and/or lower runoff volumes in NT. There was no relationship between soil test P levels and runoff P concentrations or loads in NT. Long-term manure P applications in excess of P removal by corn in CP systems ultimately increased the potential for greater dissolved and bioavailable P losses in runoff by increasing soil P levels. Maintaining high surface residue cover such as those found in long-term NT corn production systems can mitigate this risk in addition to reducing sediment and particulate P losses.
  • Authors:
    • Lokaj, G. R. W.
    • Majek, B. A.
    • Belding, R. D.
    • Hammerstedt, J.
    • Ayeni, A. O.
  • Source: HortTechnology
  • Volume: 13
  • Issue: 2
  • Year: 2003
  • Summary: Peach ( Prunus persica cv. Candor) trees were established and grown from 1996 to 1999 at the Rutgers Agricultural Research and Extension Center, Bridgeton, New Jersey, USA, to compare their performance under four methods of orchard floor preparation: flat no-till, flat cultivated, mound unmulched, and mound mulched orchard floors. The experimental site was flat and the soil was a well-drained Aura gravelly sandy loam (61% sand, 31% silt and 8% clay) with a pH of 6.5, cation exchange capacity of 5.7, and organic matter content of 2.0%. Soil moisture holding capacity and gas exchange capacity determine the efficacy of mounding in peach orchards. Under these conditions, the method of orchard floor preparation had no effect on peach tree trunk cross-sectional area, fruit number per tree, fruit size and yield. Thus, without irrigation, there was no advantage to the early performance of peach trees associated with orchard floor mounding on Aura gravelly sandy loam when situated on a flat terrain.
  • Authors:
    • Marland, G.
    • West, T. O.
  • Source: Environmental Pollution
  • Volume: 116
  • Issue: 3
  • Year: 2002
  • Summary: Agricultural ecosystems have the potential to sequester carbon in soils by altering agricultural management practices (i.e. tillage practice, cover crops, and crop rotation) and using agricultural inputs (i.e. fertilizers and irrigation) more efficiently. Changes in agricultural practices can also cause changes in CO2 emissions associated with these practices. In order to account for changes in net CO2 emissions, and thereby estimate the overall impact of carbon sequestration initiatives on the atmospheric CO2 pool, we use a methodology for full carbon cycle analysis of agricultural ecosystems. The analysis accounts for changes in carbon sequestration and emission rates with time, and results in values representing a change in net carbon flux. Comparison among values of net carbon flux for two or more systems, using the initial system as a baseline value, results in a value for relative net carbon flux. Some results from using the full carbon cycle methodology, along with US national average values for agricultural inputs, indicate that the net carbon flux averaged over all crops following conversion from conventional tillage to no-till is -189 kg C ha(-1) year(-1) (a negative value indicates net transfer of carbon from the atmosphere). The relative net carbon flux, using conventional tillage as the baseline, is -371 kg C ha(-1) year(-1), which represents the total atmospheric CO2 reduction caused by changing tillage practices. The methodology used here illustrates the importance of (1) delineating system boundaries, (2) including CO2 emissions associated with sequestration initiatives in the accounting process, and (3) comparing the new management practices associated with sequestration initiatives with the original management practices to obtain the true impact of sequestration projects on the atmospheric CO2 pool.
  • Authors:
    • Marland, G.
    • West, T. O.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 91
  • Issue: 1-3
  • Year: 2002
  • Summary: The atmospheric CO2 concentration is increasing, due primarily to fossil-fuel combustion and deforestation. Sequestering atmospheric C in agricultural soils is being advocated as a possibility to partially offset fossil-fuel emissions. Sequestering C in agriculture requires a change in management practices, i.e. efficient use of pesticides, irrigation, and farm machinery. The C emissions associated with a change in practices have not traditionally been incorporated comprehensively into C sequestration analyses. A full C cycle analysis has been completed for agricultural inputs, resulting in estimates of net C flux for three crop types across three tillage intensities. The full C cycle analysis includes estimates of energy use and C emissions for primary fuels, electricity, fertilizers, lime, pesticides, irrigation, seed production, and farm machinery. Total C emissions values were used in conjunction with C sequestration estimates to model net C flux to the atmosphere over time. Based on US average crop inputs, no-till emitted less CO2 from agricultural operations than did conventional tillage, with 137 and 168 kg C ha(-1) per year, respectively. Changing from conventional tillage to no-till is therefore estimated to both enhance C sequestration and decrease CO2 emissions. While the enhanced C sequestration will continue for a finite time, the reduction in net CO2 flux to the atmosphere, caused by the reduced fossil-fuel use, can continue indefinitely, as long as the alternative practice is continued. Estimates of net C flux, which are based on US average inputs, will vary across crop type and different climate regimes. The C coefficients calculated for agricultural inputs can be used to estimate C emissions and net C flux on a site-specific basis. Published by Elsevier Science B.V.
  • Authors:
    • Post, W. M.
    • West, T. O.
  • Source: Soil Science Society of America Journal
  • Volume: 66
  • Issue: 6
  • Year: 2002
  • Summary: Changes agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 +/- 14 g C m(-2) yr(-1), excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 +/- 12 g C m(-2) yr(-1), excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine mar L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.
  • Authors:
    • Jarvis, S. C.
    • Yamulki, S.
  • Source: Biology and Fertility of Soils
  • Volume: 36
  • Issue: 3
  • Year: 2002
  • Summary: N2O, NO, NO2, CO2 and CH4 fluxes were measured simultaneously from tilled and compacted soil in a factorial design to investigate the effect of management on trace gas emissions. Six treatments in combinations of with and without N application, tillage and compaction were investigated for a period of 3 weeks using the closed-chamber technique (for N2O, CO2 and CH4) and the open-chamber technique (for NO and NO2). Total NO emissions from the tilled plots were 2.4 times greater than from the non-tilled plots, whereas CO2 emissions were 1.8 times greater from the non-tilled plots. Compaction increased the emissions of N2O and CH4 3.5- and 4.4-fold, respectively, compared with emissions from uncompacted plots. The effects of tillage and compaction on the gaseous emissions are discussed in relation to their production, transport and lifetime within the soil. The results showed that the best option for reducing gaseous emission from fertilised soil, with regards to tillage or compaction, would be the least compacted system, regardless of the tillage status as reflected, at least in the short term, by minimal emissions of N2O and CH4 and to some extent those of NO, NO2 and CO2.
  • Authors:
    • Campbell, C. A.
    • Derksen, D. A.
    • Lafond, G. P.
    • Zentner, R. P.
  • Source: Soil & Tillage Research
  • Volume: 67
  • Issue: 1
  • Year: 2002
  • Authors:
    • Westfall, D. G.
    • Peterson, G. A.
    • Ortega, R. A.
  • Source: Agronomy Journal
  • Volume: 94
  • Issue: 4
  • Year: 2002
  • Summary: Crop residue is a valuable resource in Great Plains dryland agroecosystems because it aids in water conservation and soil erosion control. The objectives of our research were to (i) determine the effect of cropping intensity, climate gradient, and soil depth on levels and changes in soil C, soil N, and residue parameters after 8 yr of no-till management in dryland cropping systems and (ii) relate soil and residue parameters to soil C and N levels. Surface soil properties and residue parameters were compared in two cropping systems, wheat (Triticum aestivum L.)-fallow (WF) and wheat-corn (Zea mays L.) or sorghum [Sorghum bicolor (L.) Moench]-proso millet (Panicum miliaceum L.)-fallow (WCMF). The effects were examined on the summit position of a catenary sequence of soils across three environments representing an evapotranspiration (ET) gradient. Soils at the low- and medium-ET sites are classified as Argiustols, and the soil at the high-ET site is an Ustochrept. There was 3.0 Mg ha-1 of residue in the surface 10 cm of soil compared with 2.7 Mg ha-1 of residue on the soil surface averaged over ET gradient and cropping systems. About 90% of the residue in the soil was found within the 2.5-cm soil depth. The highest soil organic C (SOC) and soil organic N (SON) were observed in the surface 0- to 2.5-cm depth. There was a trend (P [<=] 0.16) for the more intense WCMF cropping system to have higher SOC and SON contents than the traditional WF system (C = 6.6 g kg-1 for WF compared with 7.5 g kg-1 for WCMF and N = 0.70 g kg-1 for WF compared with 0.74 g kg-1 for WCMF). From 1985 to 1993, gains in SOC (967 kg ha-1) and SON (74 kg ha-1) occurred in the surface 0- to 2.5- and 2.5- to 5-cm depths while losses were observed in the 5- to 10-cm depth (SOC = -694 kg ha-1; SON = -44 kg ha-1). Climate strongly modified these effects but did not reflect a clear ET gradient effect. The results suggest that higher levels of surface SOC and SON can be attained by increasing cropping intensity under no-till management.