19802015
  • Authors:
    • Schneider, U. A.
  • Year: 2002
  • Authors:
    • Albrecht, A.
    • Sa, J. C. D.
    • Ogle, S. M.
    • Denef, K.
    • Feller, C.
    • Six, J.
  • Source: Agronomie
  • Volume: 22
  • Issue: 7
  • Year: 2002
  • Summary: The long-term stabilization of soil organic matter (SOM) in tropical and temperate regions is mediated by soil biota (e. g. fungi, bacteria, roots and earthworms), soil structure (e. g. aggregation) and their interactions. On average, soil C turnover was twice as fast in tropical compared with temperate regions, but no major differences were observed in SOM quality between the two regions. Probably due to the soil mineralogy dominated by 1:1 clay minerals and oxides in tropical regions, we found a higher aggregate stability, but a lower correlation between C contents and aggregate stability in tropical soils. In addition, a smaller amount of C associated with clay and silt particles was observed in tropical versus temperate soils. In both tropical and temperate soils, a general increase in C levels (approximate to 325 +/- 113 kg C.ha(-1).yr(-1)) was observed under no-tillage compared with conventional tillage. On average, in temperate soils under no-tillage, compared with conventional tillage, CH4 uptake (approximate to0.42 +/- 0.10 kg C-CH4.ha(-1) yr(-1)) increased and N2O emissions increased (approximate to 1.95 +/- 0.45 kg N-N2O.ha(-1).yr(-1)). These increased N2O emissions lead to a negative global warming potential when expressed on a CO2 equivalent basis.
  • Authors:
    • VandenBygaart, A. J.
    • Kay, B. D.
  • Source: Soil & Tillage Research
  • Volume: 66
  • Issue: 2
  • Year: 2002
  • Summary: Pores and organic matter take a multitude of forms in soil and their characteristics change in space and time following a change in tillage practices as a new "steady state" is approached. Information on the variation with depth (stratification) in the characteristics of pores and organic matter and the rates of change in these characteristics is vital to interpreting the short- and long-term impacts of a reduction of tillage on the productivity and hydrology of agricultural soils. This information is also of value in estimating the effect of a reduction in tillage on the sequestration of carbon in agricultural soils. Recent literature comparing conventional tillage (CT) with no-till (NT) in temperate agroecosystems with varying soil textures and climates was reviewed for the purpose of assessing rates of change in the magnitude and stratigraphy of bulk density, porosity, pore size classes, organic matter content and organic matter fractions. The influence of tillage on bulk density, macroporosity and organic matter content was found to be documented more extensively than the effects on pore size distribution, soil organic matter fractions and their interactions at different soil depths. Many of the reports documenting tillage-induced changes in soil porosity and organic matter were based on measurements at a specific time after initiating the tillage trial. Results obtained by different investigators were found to be most consistent when measurements were made greater than or equal to 15 years after initiating the tillage trial. Data from different studies were used to generalize trends in pore and organic matter characteristics with depth and time. However, few studies provided measurements that permitted accurate prediction of either the rates of change or the maximum change that will occur following a change from CT to NT. Future research must enhance our ability to make these predictions if we wish to garner a better understanding of the effects of NT on the quality and productivity of agricultural soils and their ability to sequester carbon. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Authors:
    • Jellum, E. J.
    • Kuo, S.
  • Source: Agronomy Journal
  • Volume: 94
  • Issue: 3
  • Year: 2002
  • Summary: Removing cover crop top growth in the spring for forage or to prevent incorporation problems is one management option. The effects of this residue management on soil quality and productivity need to be determined. This study, conducted from 1994 to 1998 at Puyallup, WA, determined effects of various winter cover crops and residue management on soil N availability, soil C and N, and corn (Zea mays L.) yield. Included in the study were monocultures of rye (Secale cereale L.), ryegrass (Lolium multiflorum Lam), and vetch (Vicia villosa Roth subsp. villosa) and biculture of vetch and rye or ryegrass. Each year, the cover crops were seeded in the fall and incorporated into, or removed from, the soil in the spring. Average top-growth biomass was higher for the bicultures than for the monocultures. Total N accumulation was generally greatest under vetch, followed by the bicultures, and lowest for the monocultured rye or ryegrass. Whereas removing top growth of monocultured vetch or bicultures depressed presidedress soil NO3-N (Ni), the effect was generally not found for monocultured rye or ryegrass. Corn yields were affected by amounts of Ni and N fertilizer applied (r2 > 0.789), irrespective of cover crop species and residue management. Removing top growth of the cover crops limited residue C input and reduced soil organic C and N after 5 yr. Soil organic C and N accumulation, as well as increasing soil C sequestration to reduce CO2 release into atmosphere, should be considered when deciding which residue management option to choose.
  • Authors:
    • Schimel, D. S.
    • Peterson, G. A.
    • Mosier, A.
    • Parton, W.
    • Ojima, D.
    • Del Grosso, S.
  • Source: Environmental Pollution
  • Volume: 116
  • Issue: Supplement 1
  • Year: 2002
  • Summary: We present evidence to show that DAYCENT can reliably simulate soil C levels, crop yields, and annual trace gas fluxes for various soils. DAYCENT was applied to compare the net greenhouse gas fluxes for soils under different land uses. To calculate net greenhouse gas flux we accounted for changes in soil organic C, the C equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Model results and data show that dryland soils that are depleted of C due to conventional till winter wheat/fallow cropping can store C upon conversion to no till, by reducing the fallow period, or by reversion to native vegetation. However, model results suggest that dryland agricultural soils will still be net sources of greenhouse gases although the magnitude of the source can be significantly reduced and yields can be increased upon conversion to no till annual cropping. (C) 2001 Elsevier Science Ltd. All rights reserved.
  • Authors:
    • Franzluebbers, A. J.
  • Source: Soil & Tillage Research
  • Volume: 66
  • Issue: 2
  • Year: 2002
  • Summary: Soil quality is a concept based on the premise that management can deteriorate, stabilize, or improve soil ecosystem functions. It is hypothesized that the degree of stratification of soil organic C and N pools with soil depth, expressed as a ratio, could indicate soil quality or soil ecosystem functioning, because surface organic matter is essential to erosion control, water infiltration, and conservation of nutrients. Stratification ratios allow a wide diversity of soils to be compared on the same assessment scale because of an internal normalization procedure that accounts for inherent soil differences. Stratification ratios of soil organic C were 1.1, 1.2 and 1.9 under conventional tillage (CT) and 3.4, 2.0 and 2.1 under no tillage (NT) in Georgia, Texas, and Alberta/British Columbia, respectively. The difference in stratification ratio between conventional and NT within an environment was inversely proportional to the standing stock of soil organic C to a depth of 15-20 cm across environments. Greater stratification of soil C and N pools with the adoption of conservation tillage under inherently low soil organic matter conditions (i.e., warmer climatic regime or coarse-textured soil) suggests that standing stock of soil organic matter alone is a poor indication of soil quality. Stratification of biologically active soil C and N pools (i.e., soil microbial biomass and potential activity) were equally or more sensitive to tillage, cropping intensity, and soil textural variables than stratification of total C and N. High stratification ratios of soil C and N pools could be good indicators of dynamic soil quality, independent of soil type and climatic regime, because ratios >2 would be uncommon under degraded conditions. Published by Elsevier Science B.V.
  • Authors:
    • Steiner, J. L.
    • Franzluebbers, A. J.
  • Source: Agricultural Practices and Policies for Carbon Sequestration in Soil
  • Year: 2002
  • Summary: No-tillage crop production has become an accepted practice throughout the U.S. The Kyoto Protocol on climate change has prompted great interest in conservation tillage as a management strategy to help sequester CO2 from the atmosphere into soil organic matter. Numerous reports published in recent years indicate a large variation in the amount of potential soil organic carbon (SOC) storage with no tillage (NT) compared with conventional tillage (CT). Environmental controls (i.e., macroclimatic variables of temperature and precipitation) may limit the potential of NT to store SOC. We synthesized available data on SOC storage with NT compared with CT from published reports representing 111 comparisons from 39 locations in 19 states and provinces across the U.S. and Canada. These sites provided a climatic continuum of mean annual temperature and precipitation, which was used to identify potential SOC storage limitations with NT. Soil organic C storage potential under NT was greatest (~0.050 kg · m -2· yr-1) in subhumid regions of North America with mean annual precipitation-to-potential evapotranspiration ratios of 1.1 to 1.4 mm · mm-1. Although NT is important for water conservation, aggregation, and protection of the soil surface from wind and water erosion in all climates, potential SOC storage with NT compared with CT was lowest in cold and dry climates, perhaps due to prevailing cropping systems that relied on low-intensity cropping, which limited C fixation. Published data indicate that increasing cropping intensity to utilize a greater fraction of available water in cold and dry climates can increase potential SOC storage with NT. These analyses indicate greatest potential SOC storage with NT would be most likely in the relatively mild climatic regions rather than extreme environments.
  • Authors:
    • Reule, C. A.
    • Peterson, G. A.
    • Halvorson, A. D.
  • Source: Agronomy Journal
  • Volume: 94
  • Issue: 6
  • Year: 2002
  • Summary: Winter wheat (Triticum aestivum L.)-fallow (WF) using conventional stubble mulch tillage (CT) is the predominant production practice in the central Great Plains and has resulted in high erosion potential and decreased soil organic C (SOC) contents. This study, conducted from 1990 through 1994 on a Weld silt loam (Aridic Argiustoll) near Akron, CO, evaluated the effect of WF tillage system with varying degrees of soil disturbance [no-till (NT), reduced till (RT), CT, and bare fallow (BF)] and crop rotation [WF, NT wheat-corn (Zea mays L.)-fallow (WCF), and NT continuous corn (CC)] on winter wheat and corn yields, aboveground residue additions to the soil at harvest, surface residue amounts at planting, and SOC. Neither tillage nor crop rotation affected winter wheat yields, which averaged 2930 kg ha-1. Corn grain yields for the CC (NT) and WCF (NT) rotations averaged 1980 and 3520 kg ha-1, respectively. The WCF (NT) rotation returned 8870 kg ha-1 residue to the soil in each 3-yr cycle, which is 2960 kg ha-1 on an annualized basis. Annualized residue return in WF averaged 2520 kg ha-1, which was 15% less than WCF (NT). Annualized corn residue returned to the soil was 3190 kg ha-1 for the CC (NT) rotation. At wheat planting, surface crop residues varied with year, tillage, and rotation, averaging WCF (NT) (5120 kg ha-1) > WF (NT) (3380 kg ha-1) > WF (RT) (2140 kg ha-1) > WF (CT) (1420 kg ha-1) > WF (BF) (50 kg ha-1). Soil erosion potential was lessened with WCF (NT), CC (NT), and WF (NT) systems because of the large amounts of residue cover. Levels of SOC in descending order in 1994 were CC (NT) [>=] WCF (NT) [>=] WF (NT) = WF (RT) = WF (CT) > WF (BF). Although not statistically significant, the CC (NT) treatment appeared to be accumulating more SOC than any of the rotations that included a fallow period, even more rapidly than WCF (NT), which had a similar amount of annualized C addition. Reduced tillage and intensified cropping increased SOC and reduced soil erosion potential.
  • Authors:
    • Black, A. L.
    • Wienhold, B. J.
    • Halvorson, A. D.
  • Source: Soil Science Society of America Journal
  • Volume: 66
  • Issue: 3
  • Year: 2002
  • Summary: Soil C sequestration can improve soil quality and reduce agriculture's contribution to CO2 emissions. The long-term (12 yr) effects of tillage system and N fertilization on crop residue production and soil organic C (SOC) sequestration in two dryland cropping systems in North Dakota on a loam soil were evaluated. An annual cropping (AC) rotation [spring wheat (SW) (Triticum aestivum L.)-winter wheat (WW)-sunflower (SF) (Helianthus annuus L.)] and a spring wheat-fallow (SW-F) rotation were studied. Tillage systems included conventional-till (CT), minimum-till (MT), and no-till (NT). Nitrogen rates were 34, 67, and 101 kg N ha-1 for the AC system and 0, 22, and 45 kg N ha-1 for the SW-F system. Total crop residue returned to the soil was greater with AC than with SW-F. As tillage intensity decreased, SOC sequestration increased (NT > MT > CT) in the AC system but not in the SW-F system. Fertilizer N increased crop residue quantity returned to the soil, but generally did not increase SOC sequestration in either cropping system. Soil bulk density decreased with increasing tillage intensity in both systems. The results suggest that continued use of a crop-fallow farming system, even with NT, may result in loss of SOC. With NT, an estimated 233 kg C ha-1 was sequestered each year in AC system, compared with 25 kg C ha-1 with MT and a loss of 141 kg C ha-1 with CT. Conversion from crop-fallow to more intensive cropping systems utilizing NT will be needed to have a positive impact on reducing CO2 loss from croplands in the northern Great Plains.
  • Authors:
    • Smith, P.
    • Williams, S.
    • Schuler, J.
    • Killian, K.
    • Moore, R.
    • Foulk, R.
    • Easter, M.
    • Cipra, J.
    • Bluhm, G.
    • Paustian, K.
    • Brenner, J.
  • Source: Report to the Nebraska Conservation Partnership
  • Year: 2002
  • Summary: Land managers have long known the importance of soil organic matter in maintaining the productivity and sustainability of agricultural land. More recently, interest has developed in the potential for using agricultural soils to sequester C and mitigate increasing atmospheric carbon dioxide by adopting practices that increase standing stocks of carbon in soil organic matter and vegetation. Practices that increase the amount of CO2 taken up by plants (through photosynthesis), which then enter the soil as plant residues, tend to increase soil C stocks. Likewise, management practices that reduce the rate of decay or "turnover" of organic matter in soils will also tend to increase carbon stocks.