- Authors:
- Mielniczuk, J.
- Vieira, F. C. B.
- Dieckow, J.
- Bayer, C.
- Zanatta, J. A.
- Source: Soil & Tillage Research
- Volume: 94
- Issue: 2
- Year: 2007
- Summary: Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat + vetch/maize + cowpea (OV/MC)] and N fertilization [0 kg N ha-1 year-1 (0 N) and 180 kg N ha-1 year-1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0-5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0-20 cm layer varied from 0.09 to 0.34 Mg ha-1 year-1 in CT and from 0.19 to 0.65 Mg ha-1 year-1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.
- Authors:
- Paustian, K.
- Williams, S.
- Easter, M.
- Breidt, F. J.
- Ogle, S. M.
- Source: Ecological Modelling
- Volume: 205
- Issue: 3-4
- Year: 2007
- Summary: Simulation modelling is used to estimate C sequestration associated with agricultural management for purposes of greenhouse gas mitigation. Models are not completely accurate or precise estimators of C pools, however, due to insufficient knowledge and imperfect conceptualizations about ecosystem processes, leading to uncertainty in the results. It can be difficult to quantify the uncertainty using traditional error propagation techniques, such as Monte Carlo Analyses, because of the structural complexity of simulation models. Empirically based methods provide an alternative to the error propagation techniques, and our objective was to apply this alternative approach. Specifically, we developed a linear mixed-effect model to quantify both bias and variance in modeled soil C stocks that were estimated using the Century ecosystem simulation model. The statistical analysis was based on measurements from 47 agricultural experiments. A significant relationship was found between model results and measurements although there were biases and imprecision in the modeled estimates. Century under-estimated soil C stocks for several management practices, including organic amendments, no-till adoption, and inclusion of hay or pasture in rotation with annual crops. Century also over-estimated the impact of N fertilization on soil C stocks. For lands set-aside from agricultural production, Century under-estimated soil C stocks on low carbon soils and over-estimated the stocks on high carbon soils. Using an empirically based approach allows for simulation model results to be adjusted for biases as well as quantify the variance associated with modeled estimates, according to the measured "reality" of management impacts from a network of experimental sites.
- Authors:
- Worth, D.
- Desjardins, R. L.
- Dyer, J. A.
- Vergé, X. P. C.
- Source: Agricultural Systems
- Volume: 94
- Issue: 3
- Year: 2007
- Summary: In order to demonstrate the impact of an increase in production efficiency on greenhouse gas (GHG) emissions, it is important to estimate the combined methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions per unit of production. In this study, we calculated the GHG emissions from the Canadian dairy industry in 2001 as a fraction of the milk production and per dairy animal. Five regions were defined according to the importance of the dairy industry. N2O and CO2 emissions are directly linked with areas allocated to the dairy crop complex which includes only the crop areas used to feed dairy cattle. The dairy crop complex was scaled down from sector-wide crop areas using the ratios of dairy diet to national crop production of each crop type. Both fertilizer application and on-farm energy consumption were similarly scaled down from sector-wide estimates to the dairy crop complex in each region. The Intergovernmental Panel on Climate Change (IPCC) methodology, adapted for Canadian conditions, was used to calculate CH4 and N2O emissions. Most of the CO2 emission estimates were derived from a Fossil Fuel for Farm Fieldwork Energy and Emissions model except for the energy used to manufacture fertilizers. Methane was estimated to be the main source of GHG, totalling 5.75 Tg CO2 eq with around 80% coming from enteric fermentation and 20% coming from manure management. Nitrous oxide emissions were equal to 3.17 Tg CO2 eq and carbon dioxide emissions were equal to 1.45 Tg. The GHG emissions per animal were 4.55 Mg CO2 eq. On an intensity basis, average GHG emissions were 1.0 kg CO2 eq/kg milk. Methane emissions per kg of milk were estimated at 19.3 l CH4/kg milk which is in agreement with Canadian field measurements.
- Authors:
- Boast, C. W.
- Ellsworth, T. R.
- Mulvaney, R. L.
- Khan, S. A.
- Source: Journal of Environmental Quality
- Volume: 36
- Issue: 6
- Year: 2007
- Summary: Intensive use of N fertilizers in modern agriculture is motivated by the economic value of high grain yields and is generally perceived to sequester soil organic C by increasing the input of crop residues. This perception is at odds with a century of soil organic C data reported herein for Morrow Plots, the world's oldest experimental site under continuous corn (Zea mays L.). After 40 to 50 yr of synthetic fertilization that exceeded grain N removal by 60 to 190%, a net decline occurred in soil C despite increasingly massive residue C incorporation, the decline being more extensive for a corn-soybean (Glycine max L. Merr.) or corn-oats (Avena sativa L.)-hay rotation than for continuous corn and of greater intensity for the profile (0-46 cm) than the surface soil. These findings implicate fertilizer N in promoting the decomposition of crop residues and soil organic matter and are consistent with data from numerous cropping experiments involving synthetic N fertilization in the USA Corn Belt and elsewhere, although not with the interpretation usually provided. These are important implications for soil C sequestration because the yield-based input of fertilizer N has commonly exceeded grain N removal for corn production on fertile soils since the 1960s. To mitigate the ongoing consequences of soil deterioration, atmospheric CO2 enrichment, and NO3- pollution of ground and surface waters, N fertilization should be managed by site-specific assessment of soil N availability. Current fertilizer N managment practices, if combined with corn stover removal for bioenergy production; exacerbate soil C loss.
- Authors:
- Mielniczuk, J.
- Vieira, F.
- Dieckow, J.
- Bayer, C.
- Zanatta, J.
- Source: Soil & Tillage Research
- Volume: 94
- Issue: 2
- Year: 2007
- Summary: Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat+vetch/maize+cowpea (OV/MC)] and N fertilization [0 kg N ha -1 year -1 (0 N) and 180 kg N ha -1 year -1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0-5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0-20 cm layer varied from 0.09 to 0.34 Mg ha -1 year -1 in CT and from 0.19 to 0.65 Mg ha -1 year-1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.
- Authors:
- Avila, A.
- Spera, S.
- Tomm, G.
- Santos, H.
- Source: Bragantia
- Volume: 66
- Issue: 2
- Year: 2007
- Summary: The effects of soil management systems and crop rotations were assessed from 1997 to 2003, in Passo Fundo, Rio Grande do Sul State, Brazil. Four soil management systems (no-tillage, minimum tillage, conventional tillage using disc plough, and conventional tillage using mouldboard plough) and three crop rotation systems (system I (wheat/soyabean), system II (wheat/soyabean and common vetch/maize or sorghum), and system III (wheat/soyabean, common vetch/maize or sorghum and white oats/soyabean)) were compared. The main plot consisted of soil management systems, while the split-plots consisted of crop rotation systems. Energy conversion (energy available/energy consumed) and balance (energy available-energy consumed) during the seven-year period is presented. No-tillage resulted in higher energy conversion and balance (72.44 and 190 766 MJ/ha) than minimum tillage (64.06 and 167 349 MJ/ha), conventional tillage using disc plough (54.35 and 134 982 MJ/ha), and conventional tillage using mouldboard (52.02 and 128 159 MJ/ha), respectively. Wheat in crop rotations presented higher energy efficiency than that in monoculture. Maize had the highest energy efficiency among the crops.
- Authors:
- Source: Kormoproizvodstvo
- Issue: 3
- Year: 2007
- Summary: An overview of growing conditions of annual and perennial fodder crops and forage conservation in different zones of Siberia during 1986-2005 is given. Recommended planting systems for main annual and perennial crops and grass mixtures as well as their characteristics are summarised in 5 tables. New stable and highly productive multispecies cropping systems were developed, with a focus on Siberian cultivars. Achievements of Siberian research institutes in silage conservation and in selection of new rape, maize, barley, oat, field bean and clover cultivars are presented.
- Authors:
- Source: Kormoproizvodstvo
- Issue: 3
- Year: 2007
- Summary: Increasing fodder crop productivity is a research priority due to the cattle raising type of agriculture practised in Buryatia. Productivity of oats in different crop rotation schemes in the dry steppe zone during 2001-05 is tabulated. The highest oat grain-haylage yield (11.3 t/ha) was achieved in the following scheme: naked fallow - wheat + oats - oat for grain-haylage. Usage of multispecies cropping system for increasing hay cutting yield is described. Melilotus, oil radish and spring rape are highly recommended for cultivation in single and mixed forage sowing. Fodder crops productivity and additional yield depending on sowing time and fertilization in 5-years period are summarised in 2 tables. Optimum sowing time for using June-August precipitation is the last ten-day period of June. Nutritional quality of oat and barley hay according to degree of their ripeness is discussed.
- Authors:
- Drinkwater, L. E.
- David, M. B.
- Tonitto, C.
- Source: Agriculture, Ecosystems & Environment
- Volume: 112
- Issue: 1
- Year: 2006
- Summary: The availability of Haber-Bosch nitrogen (N) has permitted agricultural intensification and increased the productive capacity of agroecosystems; however, approximately 50% of this applied fertilizer N is lost from agricultural landscapes. Extensive efforts have been devoted to improving the N use efficiency of these systems. Diversified crop rotations using cover crops to provide a variety of ecosystem functions, including biological N fixation (BNF), could maintain yields while reducing N losses. Although leguminous plants used as green manures are capable of fixing N in quantities which exceed cash crop demand, the prospect of replacing significant quantities of Haber-Bosch N with BNF is widely viewed as impractical due to yield reductions. Likewise, the practice of replacing bare fallows with non-leguminous cover crops in systems receiving Haber-Bosch N is generally deemed not economically viable. We conducted a quantitative assessment of cash crop yields and N retention in rotations that implemented these practices. We performed a meta-analysis on experiments comparing crop yield, nitrate leaching, or soil nitrate between conventional (receiving inorganic fertilizer with a winter bare fallow) and diversified systems managed using either a non-legume over-wintering cover crop (amended with inorganic fertilizer) or a legume over-wintering cover crop (no additional N fertilizer). Only studies with rotations designed to produce a cash crop every year were included in our analysis. Many yield comparisons were found in the literature, but only a limited number of nitrate leaching or soil inorganic N studies met the criteria for inclusion in a meta-analysis. Long-term studies were also uncommon, with most data coming from experiments lasting 2-3 years. Yields under non-legume cover crop management were not significantly different from those in the conventional, bare fallow systems, while leaching was reduced by 70% on average. Relative to yields following conventional N-fertilization, the legume-fertilized crops averaged 10% lower yields. However, yields under green manure fertilization were not significantly different relative to conventional systems when legume biomass provided >=110 kg N ha-1. On average, nitrate leaching was reduced by 40% in legume-based systems relative to conventional fertilizer-based systems. Post-harvest soil nitrate status, a measure of potential N loss, was similar in conventional and green manure systems suggesting that reductions in leaching losses were largely due to avoidance of bare fallow periods. These results demonstrate the potential for diversified rotations using N- and non-N-fixing cover crops to maintain crop yields while reducing the anthropogenic contributions to reactive N fluxes.
- Authors:
- Jung, Y. S.
- Meek, D. W.
- Cambardella, C. A.
- Jaynes, D. B.
- Parkin, T. B.
- Kaspar, T. C.
- Source: Soil Science Society of America Journal
- Volume: 70
- Issue: 4
- Year: 2006
- Summary: Winter cover crops have the potential to increase soil organic C in the corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation in the upper Midwest. Management effects on soil C, however, are often difficult to measure because of the spatial variation of soil C across the landscape. The objective of this study was to determine the effect of oat (Avena sativa L.), rye (Secale cereale L.), and a mixture of oat and rye used as winter cover crops following soybean on soil C levels over 3 yr and both phases of a corn-soybean rotation using terrain attributes as covariates to account for the spatial variability in soil C. A field experiment was initiated in 1996 with cover crop treatments, both phases of a corn-soybean rotation, and a controlled-traffic no-till system. Oat, rye, and oat-rye mixture cover crop treatments were overseeded into the soybean phase of the rotation in late August each year. Cover crop treatments were not planted into or after the corn phase of the rotation. Soil C concentration was measured on 450 samples taken across both rotation phases in a 7.62-m grid pattern in the late spring of 2000, 2001, and 2002. Slope, relative elevation, and wetness index (WI) were used as covariates in the analysis of variance to remove 77% of the variation of soil C caused by landscape driven patterns of soil C. Soil C concentrations were 0.0023 g C g soil -1 higher in 2001 and 0.0016 g C g soil-1 higher in 2002 than in 2000. The main effects of cover crops were not significant, but the interaction of cover crops and rotation phase was significant. The rye cover crop treatment had 0.0010 g C g soil-1 higher soil C concentration than the no-cover- crop control in the soybean phase of the rotation, which included cover crops, but had 0.0016 g C g soil -1 lower C concentrations than the control in the corn phase of the rotation, which did not have cover crops. Using terrain covariates allowed us to remove most of the spatial variability of soil C, but oat and rye cover crops planted every other year after soybean did not increase soil C concentrations averaged over years and rotation phases.