- Authors:
- Licht, M. A.
- Yin, X.
- Al-Kaisi, M. M.
- Source: Agriculture, Ecosystems & Environment
- Volume: 105
- Issue: 4
- Year: 2005
- Summary: Soil organic C (SOC) and total N (TN) contents play a crucial role in sustaining agricultural production systems. Short-term (<=10-year) management effects on SOC and TN dynamics are often complex and variable. Three experiments were conducted to evaluate short-term tillage and cropping system effects on SOC and TN within the 0-30 cm soil depth across Iowa. The first experiment with no-tillage and chisel plowing treatments was established in 1994 on Clarion-Nicollet-Webster (CNW), Galva-Primghar-Sac (GPS), Kenyon-Floyd-Clyde (KFC), Marshall (M), and Otley-Mahaska-Taintor (OMT) soil associations under a corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation. The second experiment with no-tillage, strip-tillage, chisel plowing, deep ripping, and moldboard plowing treatments was initiated in 1998 on the CNW soil association in a corn-soybean rotation. The third experiment consisting of smooth bromegrass (Bromus inermis Leyss.), switchgrass (Panicum virgatum L.) and corn-soybean-alfalfa (Medicago sativa L.) treatments was established in 1991 on Monona-Ida-Hamburg (MIH) soil association under no-tillage management. Short-term tillage effects on SOC and TN occurred primarily at the 0-15 cm soil depth. Tillage effects did not vary significantly with soil association. No-tillage resulted in greater SOC and TN contents than chisel plowing at the end of 7 years of tillage practices averaged over the CNW, GPS, KFC, M, and OMT soil associations. The increase in SOC and TN with no-tillage was not related to SOC and TN stratification in the soil profile or annual C and N inputs from crop residue, but most likely due to decreased mineralization rate of soil organic matter. However, tillage effects on SOC and TN were negligible at the end of only 3 years of tillage practices on the CNW soil association. Smooth bromegrass and switchgrass systems resulted in greater SOC and TN contents at both 0-15 cm and 15-30 cm soil depths than a corn-soybean-alfalfa rotation after 10 years of management on the MIH soil association. Smooth bromegrass and switchgrass systems increased SOC by 2.3 and 1.2 Mg ha-1 yr-1 at the 0-15 cm soil depth, respectively. We conclude from these short-term experiments that reducing tillage intensity and increasing crop diversity to include perennial grasses could be effective in improving C and N sequestration in Midwest soils.
- Authors:
- Al-Kaisi, M. M.
- Yin, X.
- Licht, M. A.
- Source: Applied Soil Ecology
- Volume: 30
- Issue: 3
- Year: 2005
- Summary: A wide range of tillage systems have been used by producers in the Corn-Belt in the United States during the past decade due to their economic and environmental benefits. However, changes in soil organic carbon (SOC) and nitrogen (SON) and crop responses to these tillage systems are not well documented in a corn-soybean rotation. Two experiments were conducted to evaluate the effects of different tillage systems on SOC and SON, residue C and N inputs, and corn and soybean yields across Iowa. The first experiment consisted of no-tillage (NT) and chisel plow (CP) treatments, established in 1994 in Clarion-Nicollet-Webster (CNW), Galva-Primghar-Sac (GPS), Kenyon-Floyd-Clyde (KFC), Marshall (M), and Otley-Mahaska-Taintor (OMT) soil associations. The second experiment consisted of NT, strip-tillage (ST), CP, deep rip (DR), and moldboard plow (MP) treatments, established in 1998 in the CNW soil association. Both corn and soybean yields of NT were statistically comparable to those of CP treatment for each soil association in a corn-soybean rotation during the 7 years of tillage practices. The NT, ST, CP, and DR treatments produced similar corn and soybean yields as MP treatment in a com-soybean rotation during the 3 years of tillage implementation of the second experiment. Significant increases in SOC of 17.3, 19.5, 6.1, and 19.3% with NT over CP treatment were observed at the top 15-cm soil depth in CNW, KFC, M, and OMT soil associations, respectively, except for the GPS soil association in a corn-soybean rotation at the end of 7 years. The NT and ST resulted in significant increases in SOC of 14.7 and 11.4%, respectively, compared with MP treatment after 3 years. Changes in SON due to tillage were similar to those observed with SOC in both experiments. The increases in SOC and SON in NT treatment were not attributed to the vertical stratification of organic C and N in the soil profile or annual C and N inputs from crop residue, but most likely due to the decrease in soil organic matter mineralization in wet and cold soil conditions. It was concluded that NT and ST are superior to CP and MP in increasing SOC and SON in the top 15 cm in the short-term. The adoption of NT or CP can be an effective strategy in increasing SOC and SON in the Corn-Belt soils without significant adverse impact on corn and soybean yields in a corn-soybean rotation.
- Authors:
- Source: Journal of Environmental Quality
- Volume: 34
- Issue: 437
- Year: 2005
- Summary: Soil C change and CO2 emission due to different tillage systems need to be evaluated to encourage the adoption of conservation practices to sustain soil productivity and protect the environment. We hypothesize that soil C storage and CO2 emission respond to conservation tillage differently from conventional tillage because of their differential effects on soil properties. This study was conducted from 1998 through 2001 to evaluate tillage effects on soil C storage and CO2 emission in Clarion-Nicollet-Webster soil association in a corn [Zea mays L.]-soybean [Glycine max (L.) Merr.] rotation in Iowa. Treatments included no-tillage with and without residue, strip-tillage, deep rip, chisel plow, and moldboard plow. No-tillage with residue and strip-tillage significantly increased total soil organic C (TC) and mineral fraction C (MFC) at the 0 to 5 and 5 to 10cm soil depths compared with chisel plow after 3 yr of tillage practices. Soil CO2 emission was lower for less intensive tillage treatments compared with moldboard plow, with the greatest differences occurring immediately after tillage operations. Cumulative soil CO2 emission was 19 to 41% lower for less intensive tillage treatments than moldboard plow, and it was 24% less for no-tillage with residue than without residue during the 480-h measurement period. Estimated soil mineralizable C pool was reduced by 22 to 66% with less intensive tillage treatments compared with moldboard plow. Adopting less intensive tillage systems such as no-tillage, strip-tillage, deep rip, and chisel plow and better crop residue cover are effective in reducing CO2 emission and thus improving soil C sequestration in a corn-soybean rotation.
- Authors:
- Saggin, A.
- Santos, D.
- Gatiboni, L.
- Brunetto, G.
- Kaminski, J.
- Source: REVISTA BRASILEIRA DE CIENCIA DO SOLO
- Volume: 29
- Issue: 4
- Year: 2005
- Summary: The critical potassium level for fertilizer recommendation for soils in the State of Rio Grande do Sul (RS) and Santa Catarina (SC), Brazil, with cation exchange capacity (CEC) from 5.1 to 15 cmol c dm -3 is 60 mg dm -3. However, until 2002 concentrations of 80 mg dm -3 had been used. Two experiments were carried out on an experimental area of the Department of Soil Science of the Federal University of Santa Maria (RS-Brazil) on a sandy Typic Hapludalf under no-tillage. The objective of the study was to evaluate critical potassium levels for fertilizer recommendations for soyabean, maize and sorghum. The first experiment was set up in 1991 and carried out until 2002. The main plot treatments were the application of 0, 60, 120, and 180 kg ha -1 K 2O every four years, and split-plot treatments were the reapplication of 60 kg of K 2O in 0, 1, 2, or 3 years. The second experiment was carried out from 1995 to 2002 and the treatments were 0, 50, 100, 150, and 200 kg ha -1 year -1 K 2O. Results showed that the critical potassium level extracted with Mehlich-1 solution is 42 mg dm -3. When using the critical potassium level established by the Regional Soil Chemistry and Fertility Commission in these soils it is possible to reach over 95% of the maximum crop yield.
- Authors:
- Source: Agronomy Journal
- Volume: 97
- Issue: 3
- Year: 2005
- Summary: In the eastern Great Plains, winter wheat ( Triticum aestivum L.) is often rotated with other crops to diversify cropping systems. In these multicropping systems, wheat typically is planted with conservation tillage methods, but previous crop residues influence fertilizer N management. This field study was conducted from 1992 through 2001 in southeastern Kansas on a Parsons silt loam soil (fine, mixed, thermic, Mollic Albaqualf). The objectives were to determine effects and interactions of previous crop {grain sorghum [ Sorghum bicolor (L.) Moench] and soybean [ Glycine max (L.) Merr.]}, tillage system [reduced tillage (RT) and no-tillage (NT)], N rate (67 and 134 kg ha -1), and preplant placement (surface-broadcast and subsurface-knife) of urea ammonium nitrate solution (UAN, 280 g kg -1) on wheat grain yield, yield components, and plant N uptake in a 2-yr cropping rotation. Wheat yields averaged 3.39 Mg ha -1 following soybean compared with 2.90 Mg ha -1 following grain sorghum. Tillage effects on grain yield were smaller than other treatment factors, averaging 3.23 Mg ha -1 for RT and 3.06 Mg ha -1 for NT. Grain yields were greatest in all cropping systems for the high-N-rate subsurface-knife treatment. Plant N uptake responses indicated that grain yield differences were primarily related to greater immobilization of both fertilizer and soil N following grain sorghum, compared with soybean, and to better utilization of subsurface-knifed N than surface-broadcast N. Results indicate that wheat yield potential is more strongly influenced by previous crop, fertilizer N rate, and N placement method than tillage system.
- Authors:
- Rodrigues, L.
- Lazarini, E.
- Leal, A.
- Muraishi, C.
- Gomes Junior, F.
- Source: Acta Scientiarum Agronomy
- Volume: 27
- Issue: 2
- Year: 2005
- Summary: This experiment aimed to verify the reaction of soyabean and maize cultures sown 38 days near or after chemical or mechanical handling of different soil coverings. The experiment was carried out at the experimental Station of Unesp, Ilha Solteira Campus, in the municipality of Selviria, state of Mato Grosso do Sul, Brazil, during the agricultural year of 2001/02. The covering cultures used were: rice, sorghum, Brachiaria decumbens [ Urochloa decumbens] and B. brizantha [ U. brizantha], millet [ Pennisetum glaucum] and Eleusine coracana. It was observed that the covering cultures showed good environment adaptation in dry mass production. The maize productivity was larger when the covering cultures handling was mechanically accomplished. The interval between handling and sowing of soyabean and maize culture is important only for rice or Brachiaria decumbens covering cultures; in this case, a 38-day previous handling is recommended. Maize yield was inferior when sown on sorghum residues.
- Authors:
- Sarpe, N.
- Poienaru, S.
- Sarpe, I.
- Source: Communications in Agricultural and Applied Biological Sciences
- Volume: 70
- Issue: 3
- Year: 2005
- Summary: Soyabean cultures, especially those from the Danube Meadow, Baneasa, Romania, are very strongly infested with Johnson grass ( Sorghum halepense), which causes large damages, by reducing production by 40-85%, depending on the infestation degree. Before the synthesis of special herbicides for Johnson grass control, this species was controlled by practicing deep tillage, repeated operations with the disk, and, after the sprouting of soya plants, by mechanical and manual hoeings. In the Danube Waterside, the lack of labour force for the manual hoeing is very sharp. For this reason, there was an enlarged usage of herbicides for annual weed control (monocotyledonous and dicotyledonous), including Johnson grass. For the control of Johnson grass species, in the conditions of the Danube Meadow, the best results were obtained with the herbicides Fusilade Super [fluazifop-P], Targa Super [quizalofop-P], Agil [propaquizafop] and Select [clethodim], and for the control of annual dicotyledonous species, with the herbicide Pivot 100LC [imazapyr].
- Authors:
- Reeves, D.
- Torbert, H.
- Rogers, H.
- Runion, G.
- Prior, S.
- Source: Global Change Biology
- Volume: 11
- Issue: 4
- Year: 2005
- Summary: Increasing atmospheric CO 2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO 2. The study used a split-plot design replicated three times with two management systems as main plots and two CO 2 levels (ambient=375 L L -1 and elevated CO 2=683 L L -1) as split-plots using open-top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum ( Sorghum bicolor (L.) Moench.) and soybean ( Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover ( Trifolium incarnatum L.), sunn hemp ( Crotalaria juncea L.), and wheat ( Triticum aestivum L.)) under no-tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO 2, but CO 2 effects on weed residue were variable in the conventional system. Elevated CO 2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO 2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0-5 cm depth increment in the conservation system under CO 2-enriched conditions. Smaller shifts in soil C were noted at greater depths (5-10 and 15-30 cm) because of management or CO 2 level. Results suggest that with conservation management in an elevated CO 2 environment, greater residue amounts could increase soil C storage as well as increase ground cover.
- Authors:
- Source: Lucrari Stiintifice, Universitatea de Stiinte Agricole Si Medicina Veterinara "Ion Ionescu de la Brad" Iasi, Seria Agronomie, Romania
- Volume: 48
- Year: 2005
- Summary: Results are presented of an experiment in the Plain of Danube (Romania) with genetically modified soyabean (0094RR) in successive culture after barley under no-stripping system. Roundup Ready (containing 360 g glyphosate/l) was used to control grassy weeds, including Sorghum halepense. Roundup Ready at 3+3 l/ha resulted in 100% control of annual and perennial grasses. It also recorded the highest yield of 2800 kg/ha under 2 irrigations with a watering rate of 400 m 3/ha. With barley culture+soyabean in successive culture on the traditional system, 122 l of fuel oil was consumed for mechanical work, whereas on the system of no-stripping only 48 l/ha. Calculations concerning economic efficiency revealed that barley culture+soyabean in successive culture recorded a profit of ~28 million lei/ha.
- Authors:
- Source: Gesunde Pflanzen
- Volume: 57
- Issue: 2/3
- Year: 2005
- Summary: Herbicide-resistant varieties currently play a key role among the genetically modified arable crops soyabean, cotton, oilseed rape, and maize grown worldwide. Reasons for the quick increase in areas cultivated by herbicide-resistant crops are, among others, shortcomings of existing chemical weed control solutions in these crops and an increase in cultivation methods using minimum tillage techniques. As a countermove, the minimum or no-till cropping area increased significantly, due to the introduction of herbicide-resistance technology, particularly in soybeans. Decision criteria during the past 8 years for choosing adequate weed control systems using herbicide-resistant or conventional varieties were: varietal performance, superior crop tolerance and application timing flexibility, efficacy of post-emergent weed control measures in dry areas, controlled weed spectrum, and duration of activity including control of resistant weed biotypes. Due to restrictive labelling instructions and lack of authorization in main overseas export markets, including European liability and coexistence rules, sales restrictions are essential decision parameters for individual farms. The technical progress of herbicide-resistance technology is achieved in the short and medium term by further development of spraying sequences and tank mixtures towards ready-formulated mixtures of complementary herbicides with conventional residual mixture partners. To control and prevent the spread of new herbicide-resistant weed biotypes, complementary herbicides are combined with other modes of action. Further developments are combinations of various other transgenic traits with transgenic herbicide resistance and herbicide-resistant varieties of (worldwide) less important minor crops without satisfying conventional chemical weed control solutions. For long-term developments, plastid transformation techniques to prevent the unwanted dissemination of transgenic features could gain importance.